scispace - formally typeset
Search or ask a question
Author

Ferrante Neri

Bio: Ferrante Neri is an academic researcher from University of Nottingham. The author has contributed to research in topics: Differential evolution & Local search (optimization). The author has an hindex of 41, co-authored 170 publications receiving 6440 citations. Previous affiliations of Ferrante Neri include Polytechnic University of Bari & Instituto Politécnico Nacional.


Papers
More filters
Journal ArticleDOI
TL;DR: Numerical results show that, among the algorithms considered in this study, the most efficient additional components in a DE framework appear to be the population size reduction and the scale factor local search.
Abstract: Differential Evolution (DE) is a simple and efficient optimizer, especially for continuous optimization. For these reasons DE has often been employed for solving various engineering problems. On the other hand, the DE structure has some limitations in the search logic, since it contains too narrow a set of exploration moves. This fact has inspired many computer scientists to improve upon DE by proposing modifications to the original algorithm. This paper presents a survey on DE and its recent advances. A classification, into two macro-groups, of the DE modifications is proposed here: (1) algorithms which integrate additional components within the DE structure, (2) algorithms which employ a modified DE structure. For each macro-group, four algorithms representative of the state-of-the-art in DE, have been selected for an in depth description of their working principles. In order to compare their performance, these eight algorithm have been tested on a set of benchmark problems. Experiments have been repeated for a (relatively) low dimensional case and a (relatively) high dimensional case. The working principles, differences and similarities of these recently proposed DE-based algorithms have also been highlighted throughout the paper. Although within both macro-groups, it is unclear whether there is a superiority of one algorithm with respect to the others, some conclusions can be drawn. At first, in order to improve upon the DE performance a modification which includes some additional and alternative search moves integrating those contained in a standard DE is necessary. These extra moves should assist the DE framework in detecting new promising search directions to be used by DE. Thus, a limited employment of these alternative moves appears to be the best option in successfully assisting DE. The successful extra moves are obtained in two ways: an increase in the exploitative pressure and the introduction of some randomization. This randomization should not be excessive though, since it would jeopardize the search. A proper increase in the randomization is crucial for obtaining significant improvements in the DE functioning. Numerical results show that, among the algorithms considered in this study, the most efficient additional components in a DE framework appear to be the population size reduction and the scale factor local search. Regarding the modified DE structures, the global and local neighborhood search and self-adaptive control parameter scheme, recently proposed in literature, seem to be the most promising modifications.

884 citations

Journal ArticleDOI
TL;DR: Several classes of optimization problems, such as discrete, continuous, constrained, multi-objective and characterized by uncertainties, are addressed by indicating the memetic “recipes” proposed in the literature.
Abstract: Memetic computing is a subject in computer science which considers complex structures such as the combination of simple agents and memes, whose evolutionary interactions lead to intelligent complexes capable of problem-solving. The founding cornerstone of this subject has been the concept of memetic algorithms, that is a class of optimization algorithms whose structure is characterized by an evolutionary framework and a list of local search components. This article presents a broad literature review on this subject focused on optimization problems. Several classes of optimization problems, such as discrete, continuous, constrained, multi-objective and characterized by uncertainties, are addressed by indicating the memetic “recipes” proposed in the literature. In addition, this article focuses on implementation aspects and especially the coordination of memes which is the most important and characterizing aspect of a memetic structure. Finally, some considerations about future trends in the subject are given.

522 citations

BookDOI
02 Nov 2011
TL;DR: This book organizes, in a structured way, all the most important results in the field of MAs since their earliest definition until now, including various algorithmic solutions as well as successful applications.
Abstract: Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems. The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes. Handbook of Memetic Algorithms organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now. A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem, memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, a great attention has been given by the editors to make it a compact and smooth work which covers all the main areas of computational intelligence optimization. It is not only a necessary read for researchers working in the research area, but also a useful handbook for practitioners and engineers who need to address real-world optimization problems. In addition, the book structure makes it an interesting work also for graduate students and researchers is related fields of mathematics and computer science.

332 citations

Journal ArticleDOI
TL;DR: An extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking Neural P system, are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems.
Abstract: Membrane systems (also called P systems) refer to the computing models abstracted from the structure and the functioning of the living cell as well as from the cooperation of cells in tissues, organs, and other populations of cells. Spiking neural P systems (SNPS) are a class of distributed and parallel computing models that incorporate the idea of spiking neurons into P systems. To attain the solution of optimization problems, P systems are used to properly organize evolutionary operators of heuristic approaches, which are named as membrane-inspired evolutionary algorithms (MIEAs). This paper proposes a novel way to design a P system for directly obtaining the approximate solutions of combinatorial optimization problems without the aid of evolutionary operators like in the case of MIEAs. To this aim, an extended spiking neural P system (ESNPS) has been proposed by introducing the probabilistic selection of evolution rules and multi-neurons output and a family of ESNPS, called optimization spiking neural P system (OSNPS), are further designed through introducing a guider to adaptively adjust rule probabilities to approximately solve combinatorial optimization problems. Extensive experiments on knapsack problems have been reported to experimentally prove the viability and effectiveness of the proposed neural system.

284 citations

Journal ArticleDOI
01 Feb 2007
TL;DR: A fast adaptive memetic algorithm (FAMA) is proposed which is used to design the optimal control system for a permanent-magnet synchronous motor and excellent results are obtained in terms of optimality, convergence, and algorithmic efficiency.
Abstract: A fast adaptive memetic algorithm (FAMA) is proposed which is used to design the optimal control system for a permanent-magnet synchronous motor. The FAMA is a memetic algorithm with a dynamic parameter setting and two local searchers adaptively launched, either one by one or simultaneously, according to the necessities of the evolution. The FAMA has been tested for both offline and online optimization. The former is based on a simulation of the whole system-control system and plant-using a model obtained through identification tests. The online optimization is model free because each fitness evaluation consists of an experimental test on the real motor drive. The proposed algorithm has been compared with other optimization approaches, and a matching analysis has been carried out offline and online. Excellent results are obtained in terms of optimality, convergence, and algorithmic efficiency. Moreover, the FAMA has given very robust results in the presence of noise in the experimental system

226 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far are presented.
Abstract: Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms in current use. DE operates through similar computational steps as employed by a standard evolutionary algorithm (EA). However, unlike traditional EAs, the DE-variants perturb the current-generation population members with the scaled differences of randomly selected and distinct population members. Therefore, no separate probability distribution has to be used for generating the offspring. Since its inception in 1995, DE has drawn the attention of many researchers all over the world resulting in a lot of variants of the basic algorithm with improved performance. This paper presents a detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far. Also, it provides an overview of the significant engineering applications that have benefited from the powerful nature of DE.

4,321 citations

Journal ArticleDOI
TL;DR: This paper surveys the development ofMOEAs primarily during the last eight years and covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic MOEas, coevolutionary MOE As, selection and offspring reproduction operators, MOE as with specific search methods, MOeAs for multimodal problems, constraint handling and MOE
Abstract: A multiobjective optimization problem involves several conflicting objectives and has a set of Pareto optimal solutions. By evolving a population of solutions, multiobjective evolutionary algorithms (MOEAs) are able to approximate the Pareto optimal set in a single run. MOEAs have attracted a lot of research effort during the last 20 years, and they are still one of the hottest research areas in the field of evolutionary computation. This paper surveys the development of MOEAs primarily during the last eight years. It covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic MOEAs, coevolutionary MOEAs, selection and offspring reproduction operators, MOEAs with specific search methods, MOEAs for multimodal problems, constraint handling and MOEAs, computationally expensive multiobjective optimization problems (MOPs), dynamic MOPs, noisy MOPs, combinatorial and discrete MOPs, benchmark problems, performance indicators, and applications. In addition, some future research issues are also presented.

1,842 citations

Journal ArticleDOI
TL;DR: The components and concepts that are used in various metaheuristics are outlined in order to analyze their similarities and differences and the classification adopted in this paper differentiates between single solution based metaheURistics and population based meta heuristics.

1,343 citations

Journal ArticleDOI
TL;DR: It is found that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research on DE.
Abstract: Differential Evolution (DE) is arguably one of the most powerful and versatile evolutionary optimizers for the continuous parameter spaces in recent times. Almost 5 years have passed since the first comprehensive survey article was published on DE by Das and Suganthan in 2011. Several developments have been reported on various aspects of the algorithm in these 5 years and the research on and with DE have now reached an impressive state. Considering the huge progress of research with DE and its applications in diverse domains of science and technology, we find that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research. The purpose of this paper is to summarize and organize the information on these current developments on DE. Beginning with a comprehensive foundation of the basic DE family of algorithms, we proceed through the recent proposals on parameter adaptation of DE, DE-based single-objective global optimizers, DE adopted for various optimization scenarios including constrained, large-scale, multi-objective, multi-modal and dynamic optimization, hybridization of DE with other optimizers, and also the multi-faceted literature on applications of DE. The paper also presents a dozen of interesting open problems and future research issues on DE.

1,265 citations