scispace - formally typeset
Search or ask a question
Author

Filip Kadlec

Bio: Filip Kadlec is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Terahertz radiation & Dielectric. The author has an hindex of 28, co-authored 138 publications receiving 2331 citations. Previous affiliations of Filip Kadlec include Slovak Academy of Sciences & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental observation of freely propagating pulses of terahertz radiation produced by optical rectification of femtosecond pulses at metal surfaces opens a qualitatively new way of investigation of nonlinear phenomena atMetal surfaces.
Abstract: The emission of freely propagating terahertz (THz) radiation coming from optical rectification at metallic surfaces has been detected and characterized for the first time to the authors’ knowledge. The observed THz transients are induced through nonlinear electronic processes at gold and silver surfaces on intense pulsed optical photoexcitation and exhibit a peak electric field of as much as 200 V/cm. This finding opens a qualitatively new way to investigate nonlinear phenomena at metal surfaces and also can be exploited for the development of new THz emitters.

114 citations

Journal ArticleDOI
TL;DR: In this article, an approach to time-domain terahertz reflection spectroscopy is proposed and demonstrated, which allows one to obtain very accurately the relative phase of a reflected THz wave form, and consequently the complex dielectric function can be precisely extracted.
Abstract: An approach to time-domain terahertz reflection spectroscopy is proposed and demonstrated. It allows one to obtain very accurately the relative phase of a reflected THz wave form, and consequently the complex dielectric function can be precisely extracted. The relevant setup was demonstrated to allow measurements of a variety of samples: we present results for doped silicon and for ferroelectric SrBi2Ta2O9 (bulk ceramics as well as thin film on sapphire substrates).

113 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate experimentally and theoretically dielectric metamaterials exhibiting a tunable range of negative effective permeability in the terahertz spectral region 0.2 -0.36 THz.
Abstract: We demonstrate experimentally and theoretically dielectric metamaterials exhibiting a tunable range of negative effective permeability in the terahertz spectral region 0.2–0.36 THz. Our structures consist of an array of intrinsically nonmagnetic rods made of an incipient ferroelectric SrTiO3 which shows a high tunable permittivity. The magnetic response and its tuning are achieved by a temperature control of the permittivity of SrTiO3, which defines the resonant confinement of the electromagnetic field within the rods.

110 citations

Journal ArticleDOI
TL;DR: An agile optically controlled switch or modulator of terahertz (THz) radiation based on a one-dimensional photonic crystal with a GaAs wafer inserted in the middle as a defect layer is presented.
Abstract: We present an agile optically controlled switch or modulator of terahertz (THz) radiation. The element is based on a one-dimensional photonic crystal with a GaAs wafer inserted in the middle as a defect layer. The THz electric field is enhanced in the photonic structure at the surfaces of the GaAs wafer. Excitation of the front GaAs surface by ultrashort 810 nm laser pulses then leads to an efficient modulation of the THz beam even at low photocarrier concentrations (approximately 10(16) cm(-3)). The response time of the element to pulsed photoexcitation is about 130 ps.

104 citations

Journal ArticleDOI
TL;DR: The experiments reveal that the emitted terahertz field is suppressed for a thickness below 100 nm, which gives evidence of the nonlocal character of the response.
Abstract: Emission of terahertz (THz) radiation as a result of optical rectification of intense femtosecond laser pulses on thin gold films has been studied by time-domain THz spectroscopy. The THz amplitude was measured as a function of film thickness and incidence angle. The experiments reveal that the emitted THz field is suppressed for a thickness below 100?nm, which gives evidence of the nonlocal character of the response. The variation of incidence angle allows us to estimate the components of susceptibility tensor ?ijk(2). For thicker films and near grazing incidence, the emitted THz field attains a peak value of 4?kV?cm.

102 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

01 Jan 2011

2,117 citations

Journal ArticleDOI
TL;DR: The terahertz time-domain spectroscopy (THz-TDS) as discussed by the authors is a new spectroscopic technique based on coherent and time-resolved detection of the electric field of ultrashort radiation bursts.
Abstract: Over the past three decades a new spectroscopic technique with unique possibilities has emerged. Based on coherent and time-resolved detection of the electric field of ultrashort radiation bursts in the far-infrared, this technique has become known as terahertz time-domain spectroscopy (THz-TDS). In this review article the authors describe the technique in its various implementations for static and time-resolved spectroscopy, and illustrate the performance of the technique with recent examples from solid-state physics and physical chemistry as well as aqueous chemistry. Examples from other fields of research, where THz spectroscopic techniques have proven to be useful research tools, and the potential for industrial applications of THz spectroscopic and imaging techniques are discussed.

1,636 citations

Journal ArticleDOI
TL;DR: The goal of this paper is to provide a comprehensive review of wireless sub-THz and THz communications and report on the reported advantages and challenges of using sub-terahertz andTHz waves as a means to transmit data wirelessly.
Abstract: According to Edholm’s law, the demand for point-to-point bandwidth in wireless short-range communications has doubled every 18 months over the last 25 years It can be predicted that data rates of around 5–10 Gb/s will be required in ten years In order to achieve 10 Gb/s data rates, the carrier frequencies need to be increased beyond 100 GHz Over the past ten years, several groups have considered the prospects of using sub-terahertz (THz) and THz waves (100–2000 GHz) as a means to transmit data wirelessly Some of the reported advantages of THz communications links are inherently higher bandwidth compared to millimeter wave links, less susceptibility to scintillation effects than infrared wireless links, and the ability to use THz links for secure communications Our goal of this paper is to provide a comprehensive review of wireless sub-THz and THz communications

991 citations