scispace - formally typeset
Search or ask a question
Author

Finlay D. Morrison

Bio: Finlay D. Morrison is an academic researcher from University of St Andrews. The author has contributed to research in topics: Dielectric & Ferroelectricity. The author has an hindex of 36, co-authored 106 publications receiving 6008 citations. Previous affiliations of Finlay D. Morrison include Andrews University & University of Warwick.


Papers
More filters
Journal ArticleDOI
TL;DR: Subramanian et al. as discussed by the authors attributed the giant-dielectric phenomenon to a grain boundary (internal) barrier layer capacitance (IBLC) instead of an intrinsic property associated with the crystal structure.
Abstract: There has been much recent interest in a so-called “giant-dielectric phenomenon” displayed by an unusual cubic perovskite-type material, CaCu3Ti4O12; however, the origin of the high permittivity has been unclear [M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000); C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001); A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid State Commun. 115, 217 (2000)]. Impedance spectroscopy on CaCu3Ti4O12 ceramics demonstrates that they are electrically heterogeneous and consist of semiconducting grains with insulating grain boundaries. The giant-dielectric phenomenon is therefore attributed to a grain boundary (internal) barrier layer capacitance (IBLC) instead of an intrinsic property associated with the crystal structure. This barrier layer electrical microstructure with effective permittivity values in excess of 10 000 can be fa...

1,438 citations

Journal ArticleDOI
25 Feb 2005-Science
TL;DR: It is argued that epitaxial strain does not enhance the magnetization and polarization in BiFeO3 and suggests the potential for novel devices that exploit the anticipated strain-mediated magnetoelectric coupling between the two ordered ground states.
Abstract: Wang et al recently reported multiferroic behavior, with ferromagnetic and ferroelectric polarizations that are both large at room temperature, in thin strained films of BiFeO3 (BFO). Although at room temperature, bulk BFO is ferroelectric and anti-ferromagnetic , Wang et al. reported that a 70-nm film shows both an enhanced ferroelectric polarization (90 μC cm–2) and a substantial magnetization (1 μB/Fe). This remains the only report of a robust room-temperature multiferroic and suggests the potential for novel devices that exploit the anticipated strain-mediated magnetoelectric coupling between the two ordered ground states. In this Comment, we argue that epitaxial strain does not enhance the magnetization and polarization in BiFeO3

554 citations

Journal ArticleDOI
TL;DR: The single phase La-doped BaTiO3 with the formula Ba 1−xLaxTi1−x/4O3: 0.20 was prepared by solid state reaction of oxide mixtures at 1350°C, 3 days, in O2.
Abstract: Single phase La-doped BaTiO3 with the formula Ba1−xLaxTi1−x/4O3: 0⩽x⩽0.20 was prepared by solid state reaction of oxide mixtures at 1350 °C, 3 days, in O2. The tetragonal distortion in undoped BaTiO3 decreased with x and samples were cubic for x⩾0.05. Both the tetragonal/cubic and orthorhombic/tetragonal transition temperatures decreased with x, but at different rates, and appeared to coalesce at x∼0.08. The value of the permittivity maximum at the tetragonal/cubic phase transition in ceramic samples increased from ∼10 000 for x=0 at 130 °C to ∼25 000 for x=0.06 at ∼−9 °C. At larger x, the permittivity maximum broadened, showed “relaxor”-type frequency dependent permittivity characteristics and continued to move to lower temperatures. Samples fired in O2 were insulating and showed no signs of donor doping whereas air-fired samples were semiconducting, attributable to oxygen loss.

331 citations

Journal ArticleDOI
TL;DR: In this article, the electrical properties of two single phase, lanthanum-doped BaTiO3 compositions, x= 0.03 and x = 0.20, were investigated by impedance spectroscopy after heat treatment in oxygen, argon, and air at 1350°C.
Abstract: The electrical properties of two single-phase, lanthanum-doped BaTiO3 compositions, x= 0.03 and x= 0.20, in Ba1–xLaxTi1–x/4O3 were investigated by impedance spectroscopy after heat treatment in oxygen, argon, and air at 1350°C. Samples heated in oxygen were electrically insulating, whereas those heated in argon lost oxygen and were semiconducting at room temperature, irrespective of x. Samples heated in air showed intermediate electrical properties and also were electrically inhomogeneous; the two compositions showed different electrical behaviors, and a model for each, based on oxygen nonstoichiometry within the ceramics, is proposed. Oxygen deficiency in samples sintered in air was avoided by heating at 1200°C, instead of 1350°C. Alternatively, oxygen lost from ceramics heated in air at 1350°C was regained by postannealing in oxygen at 1350°C.

266 citations

Journal ArticleDOI
TL;DR: In this article, a detailed investigation using variable temperature powder neutron diffraction demonstrates that BiFeO3 undergoes a phase transition from the ferroelectric alpha phase (rhombohedral, R3c) to a paraelectric beta phase (orthorhombic, Pbnm) between 820 degrees C and 830 degrees C.
Abstract: A detailed investigation using variable temperature powder neutron diffraction demonstrates that BiFeO3 undergoes a phase transition from the ferroelectric alpha phase (rhombohedral, R3c) to a paraelectric beta phase (orthorhombic, Pbnm) between 820 degrees C and 830 degrees C. Coexistence of both phases over a finite temperature interval, together with abrupt changes in key structural parameters, confirms that the transition is first order. The beta phase corresponds to a GdFeO3-type perovskite structure.

265 citations


Cited by
More filters
Journal ArticleDOI
17 Aug 2006-Nature
TL;DR: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements that arises through the quantum mechanical phenomenon of exchange.
Abstract: A ferroelectric crystal exhibits a stable and switchable electrical polarization that is manifested in the form of cooperative atomic displacements. A ferromagnetic crystal exhibits a stable and switchable magnetization that arises through the quantum mechanical phenomenon of exchange. There are very few 'multiferroic' materials that exhibit both of these properties, but the 'magnetoelectric' coupling of magnetic and electrical properties is a more general and widespread phenomenon. Although work in this area can be traced back to pioneering research in the 1950s and 1960s, there has been a recent resurgence of interest driven by long-term technological aspirations.

6,813 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize both the basic physics and unresolved aspects of BiFeO3 and device applications, which center on spintronics and memory devices that can be addressed both electrically and magnetically.
Abstract: BiFeO3 is perhaps the only material that is both magnetic and a strong ferroelectric at room temperature. As a result, it has had an impact on the field of multiferroics that is comparable to that of yttrium barium copper oxide (YBCO) on superconductors, with hundreds of publications devoted to it in the past few years. In this Review, we try to summarize both the basic physics and unresolved aspects of BiFeO3 (which are still being discovered with several new phase transitions reported in the past few months) and device applications, which center on spintronics and memory devices that can be addressed both electrically and magnetically.

3,526 citations

Journal ArticleDOI
TL;DR: Novel device paradigms based on magnetoelectric coupling are discussed, the key scientific challenges in the field are outlined, and high-quality thin-film multiferroics are reviewed.
Abstract: Multiferroic materials, which show simultaneous ferroelectric and magnetic ordering, exhibit unusual physical properties — and in turn promise new device applications — as a result of the coupling between their dual order parameters. We review recent progress in the growth, characterization and understanding of thin-film multiferroics. The availability of high-quality thin-film multiferroics makes it easier to tailor their properties through epitaxial strain, atomic-level engineering of chemistry and interfacial coupling, and is a prerequisite for their incorporation into practical devices. We discuss novel device paradigms based on magnetoelectric coupling, and outline the key scientific challenges in the field.

3,472 citations

Journal ArticleDOI
16 Feb 2007-Science
TL;DR: Electroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters and electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.
Abstract: Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.

2,495 citations