scispace - formally typeset
Search or ask a question
Author

Fiona H. Scholes

Bio: Fiona H. Scholes is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Chromate conversion coating & Conversion coating. The author has an hindex of 19, co-authored 27 publications receiving 1813 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A sequential slot-die coating process is developed to produce efficient perovskite solar cells and to be used in a large-scale roll-to-roll printing process, a scalable printing method.
Abstract: Fully printed perovskite solar cells are demonstrated with slot-die coating, a scalable printing method. A sequential slot-die coating process is developed to produce efficient perovskite solar cells and to be used in a large-scale roll-to-roll printing process. All layers excluding the electrodes are printed and devices demonstrate up to 11.96% power conversion efficiency. It is also demonstrated that the new process can be used in roll-to-roll production.

792 citations

Journal ArticleDOI
TL;DR: In this paper, titrations of cerium-based conversion coating solutions were carried out in order to model the reactions that occur at the metal-solution interface during coating, with a particular emphasis on investigating the role of hydrogen peroxide (H2O2).

196 citations

Journal ArticleDOI
TL;DR: A high molecular weight donor-acceptor conjugated polymer is synthesized using the Suzuki polycondensation method and a single-junction bulk-heterojunction solar cell is fabricated giving a power conversion efficiency of 9.4% using a fullerene-modified ZnO interlayer at the cathode contact.
Abstract: A high molecular weight donor-acceptor conjugated polymer is synthesized using the Suzuki polycondensation method. Using this polymer, a single-junction bulk-heterojunction solar cell is fabricated giving a power conversion efficiency of 9.4% using a fullerene-modified ZnO interlayer at the cathode contact.

182 citations

Journal ArticleDOI
TL;DR: A structure-device performance correlation in bulk heterojunction solar cells for new indandione-derived small molecule electron acceptors, FEHIDT and F8IDT, is presented, finding consistent with reduced intermolecular interactions.

104 citations

Journal ArticleDOI
TL;DR: In this paper, a method is described for the rapid screening of water-soluble corrosion inhibitors, which involves a fixed potential being applied between identical electrodes while immersed in an inhibitor solution, and the electrochemical response of the anodic and cathodic reactions, with and without the inhibitor, is then compared.

90 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2019-Nature
TL;DR: A double-layered halide architecture for perovskite solar cells enables the use of dopant-free poly(3-hexylthiophene) as a hole-transport material, forming stable and scalable devices with a certified power conversion efficiency of 22.7 per cent.
Abstract: Perovskite solar cells typically comprise electron- and hole-transport materials deposited on each side of a perovskite active layer. So far, only two organic hole-transport materials have led to state-of-the-art performance in these solar cells1: poly(triarylamine) (PTAA)2–5 and 2,2ʹ,7,7ʹ-tetrakis(N,N-di-p-methoxyphenylamine)-9,9ʹ-spirobifluorene (spiro-OMeTAD)6,7. However, these materials have several drawbacks in terms of commercialization, including high cost8, the need for hygroscopic dopants that trigger degradation of the perovskite layer9 and limitations in their deposition processes10. Poly(3-hexylthiophene) (P3HT) is an alternative hole-transport material with excellent optoelectronic properties11–13, low cost8,14 and ease of fabrication15–18, but so far the efficiencies of perovskite solar cells using P3HT have reached only around 16 per cent19. Here we propose a device architecture for highly efficient perovskite solar cells that use P3HT as a hole-transport material without any dopants. A thin layer of wide-bandgap halide perovskite is formed on top of the narrow-bandgap light-absorbing layer by an in situ reaction of n-hexyl trimethyl ammonium bromide on the perovskite surface. Our device has a certified power conversion efficiency of 22.7 per cent with hysteresis of ±0.51 per cent; exhibits good stability at 85 per cent relative humidity without encapsulation; and upon encapsulation demonstrates long-term operational stability for 1,370 hours under 1-Sun illumination at room temperature, maintaining 95 per cent of the initial efficiency. We extend our platform to large-area modules (24.97 square centimetres)—which are fabricated using a scalable bar-coating method for the deposition of P3HT—and achieve a power conversion efficiency of 16.0 per cent. Realizing the potential of P3HT as a hole-transport material by using a wide-bandgap halide could be a valuable direction for perovskite solar-cell research. A double-layered halide architecture for perovskite solar cells enables the use of dopant-free poly(3-hexylthiophene) as a hole-transport material, forming stable and scalable devices with a certified power conversion efficiency of 22.7 per cent.

1,681 citations

Journal ArticleDOI
TL;DR: Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Abstract: The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within t...

1,269 citations

Journal ArticleDOI
TL;DR: Recent progress on hybrid perovskites is reviewed including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics.
Abstract: Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.

1,200 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive review on the elastomeric biomaterials used in tissue engineering, with emphasis on the most important candidates to date.

1,051 citations

Journal ArticleDOI
TL;DR: The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability.
Abstract: ConspectusThe active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging.The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address ...

1,026 citations