scispace - formally typeset
Search or ask a question
Author

Fjjg Frans Janssen

Bio: Fjjg Frans Janssen is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Tar & Exergy. The author has an hindex of 17, co-authored 21 publications receiving 4600 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the research and development in this area are reviewed and cited in the present paper, and the concepts of two-stage gasification and secondary air injection in the gasifier are of prime importance.
Abstract: Tar formation is one of the major problems to deal with during biomass gasification. Tar condenses at reduced temperature, thus blocking and fouling process equipments such as engines and turbines. Considerable efforts have been directed on tar removal from fuel gas. Tar removal technologies can broadly be divided into two approaches; hot gas cleaning after the gasifier (secondary methods), and treatments inside the gasifier (primary methods). Although secondary methods are proven to be effective, treatments inside the gasifier are gaining much attention as these may eliminate the need for downstream cleanup. In primary treatment, the gasifier is optimized to produce a fuel gas with minimum tar concentration. The different approaches of primary treatment are (a) proper selection of operating parameters, (b) use of bed additive/catalyst, and (c) gasifier modifications. The operating parameters such as temperature, gasifying agent, equivalence ratio, residence time, etc. play an important role in formation and decomposition of tar. There is a potential of using some active bed additives such as dolomite, olivine, char, etc. inside the gasifier. Ni-based catalyst are reported to be very effective not only for tar reduction, but also for decreasing the amount of nitrogenous compounds such as ammonia. Also, reactor modification can improve the quality of the product gas. The concepts of two-stage gasification and secondary air injection in the gasifier are of prime importance. Some aspects of primary methods and the research and development in this area are reviewed and cited in the present paper.

1,352 citations

Journal ArticleDOI
01 Dec 2006-Energy
TL;DR: In this paper, the authors compared three types of pre-treatment for wood torrefaction: air-blown gasification of wood, air-blowing of torrefied wood, and oxygen-blending of wood at atmospheric pressure.

614 citations

Journal ArticleDOI
TL;DR: In this paper, the weight loss kinetics for torrefaction of willow, a deciduous wood type, was studied by isothermal thermogravimetry, and a two-step reaction in series model was found to give an accurate description.

589 citations

Journal ArticleDOI
TL;DR: The torrefied wood product has a brown/black color, reduced volatile content and increased energy density: 20.7 MJ/kg (after 15 min reaction time at 270 °C) versus 17.7MJ/kg for untreated willow.

582 citations

Journal ArticleDOI
TL;DR: In this article, the catalytic activity of olivine is investigated via steam-reforming reaction of naphthalene as model biomass tar compound, and the effect of pretreatment time is investigated.

296 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: A broad review of the state-of-the-art biomass pyrolysis research can be found in this article, where three major components (cellulose, hemicellulose and lignin) are discussed in detail.

1,613 citations

Journal ArticleDOI
TL;DR: A review of modern biomass-based transportation fuels such as fuels from Fischer-Tropsch synthesis, bioethanol, fatty acid (m)ethylester, biomethanol, and biohydrogen are briefly reviewed in this paper.

1,505 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art in modeling chemical and physical processes of wood and biomass pyrolysis is reported, and the main achievements of numerical simulations are discussed.

1,495 citations

Journal ArticleDOI
TL;DR: In this paper, a general summary of the properties of pyrolytic products and their analysis methods is given, as well as a review of the parameters that affect the process and a summary of current state of the art.
Abstract: Pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. Depending on the heating rate and residence time, biomass pyrolysis can be divided into three main categories slow (conventional), fast and flash pyrolysis mainly aiming at maximising either the bio-oil or biochar yields. Synthesis gas or hydrogen-rich gas can also be the target of biomass pyrolysis. Maximised gas rates can be achieved through the catalytic pyrolysis process, which is now increasingly being developed. Biomass pyrolysis generally follows a three-step mechanism comprising of dehydration, primary and secondary reactions. Dehydrogenation, depolymerisation, and fragmentation are the main competitive reactions during the primary decomposition of biomass. A number of parameters affect the biomass pyrolysis process, yields and properties of products. These include the biomass type, biomass pretreatment (physical, chemical, and biological), reaction atmosphere, temperature, heating rate and vapour residence time. This manuscript gives a general summary of the properties of the pyrolytic products and their analysis methods. Also provided are a review of the parameters that affect biomass pyrolysis and a summary of the state of industrial pyrolysis technologies.

1,379 citations