scispace - formally typeset
Search or ask a question
Author

Flavio Piccoli

Bio: Flavio Piccoli is an academic researcher from University of Milano-Bicocca. The author has contributed to research in topics: Convolutional neural network & Computer science. The author has an hindex of 7, co-authored 12 publications receiving 249 citations. Previous affiliations of Flavio Piccoli include ETH Zurich & Politehnica University of Timișoara.

Papers
More filters
Journal ArticleDOI
12 Jan 2018-Sensors
TL;DR: A region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity, which outperforms the state of the art.
Abstract: Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

218 citations

Journal ArticleDOI
TL;DR: The method uses a convolutional neural network for the prediction of the coefficients of local polynomial transformations that are applied to the input image and shows that the quality of the restoration performed by the method is clearly superior to that of traditional color balancing and restoration procedures.
Abstract: We present a method for the automatic restoration of images subjected to the application of photographic filters, such as those made popular by photo-sharing services. The method uses a convolutional neural network (CNN) for the prediction of the coefficients of local polynomial transformations that are applied to the input image. The experiments we conducted on a subset of the Places-205 dataset show that the quality of the restoration performed by our method is clearly superior to that of traditional color balancing and restoration procedures, and to that of recent CNN architectures for image-to-image translation.

54 citations

Proceedings ArticleDOI
16 Jun 2019
TL;DR: The first NTIRE challenge on perceptual image enhancement as discussed by the authors focused on proposed solutions and results of real-world photo enhancement problem, where the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with Canon 70D DSLR camera.
Abstract: This paper reviews the first NTIRE challenge on perceptual image enhancement with the focus on proposed solutions and results. The participating teams were solving a real-world photo enhancement problem, where the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with Canon 70D DSLR camera. The considered problem embraced a number of computer vision subtasks, such as image denoising, image resolution and sharpness enhancement, image color/contrast/exposure adjustment, etc. The target metric used in this challenge combined PSNR and SSIM scores with solutions' perceptual results measured in the user study. The proposed solutions significantly improved baseline results, defining the state-of-the-art for practical image enhancement.

45 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This paper reviews the second NTIRE challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results and gauge the state-of-the-art in imageDehazing.
Abstract: This paper reviews the second NTIRE challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The training data consists from 55 hazy images (with dense haze generated in an indoor or outdoor environment) and their corresponding ground truth (haze-free) images of the same scene. The dense haze has been produced using a professional haze/fog generator that imitates the real conditions of haze scenes. The evaluation consists from the comparison of the dehazed images with the ground truth images. The dehazing process was learnable through provided pairs of haze-free and hazy train images. There were ~ 270 registered participants and 23 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing.

34 citations

Journal ArticleDOI
TL;DR: It is shown how, starting from few labeled images, it is possible to augment small and long-tail datasets by producing new images with the associated semantic layouts and a remarkable increase in performance, especially with low cardinality classes, when CNNs are trained on the augmented datasets with respect to original datasets.

30 citations


Cited by
More filters
Posted Content
TL;DR: The superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, is shown, suggesting that the HRNet is a stronger backbone for computer vision problems.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at~{\url{this https URL}}.

1,278 citations

Journal ArticleDOI
TL;DR: The High-Resolution Network (HRNet) as mentioned in this paper maintains high-resolution representations through the whole process by connecting the high-to-low resolution convolution streams in parallel and repeatedly exchanging the information across resolutions.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel and (ii) repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at https://github.com/HRNet .

1,162 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work introduces the MVTec Anomaly Detection (MVTec AD) dataset containing 5354 high-resolution color images of different object and texture categories, and conducts a thorough evaluation of current state-of-the-art unsupervised anomaly detection methods based on deep architectures such as convolutional autoencoders, generative adversarial networks, and feature descriptors using pre-trained convolved neural networks.
Abstract: The detection of anomalous structures in natural image data is of utmost importance for numerous tasks in the field of computer vision. The development of methods for unsupervised anomaly detection requires data on which to train and evaluate new approaches and ideas. We introduce the MVTec Anomaly Detection (MVTec AD) dataset containing 5354 high-resolution color images of different object and texture categories. It contains normal, i.e., defect-free, images intended for training and images with anomalies intended for testing. The anomalies manifest themselves in the form of over 70 different types of defects such as scratches, dents, contaminations, and various structural changes. In addition, we provide pixel-precise ground truth regions for all anomalies. We also conduct a thorough evaluation of current state-of-the-art unsupervised anomaly detection methods based on deep architectures such as convolutional autoencoders, generative adversarial networks, and feature descriptors using pre-trained convolutional neural networks, as well as classical computer vision methods. This initial benchmark indicates that there is considerable room for improvement. To the best of our knowledge, this is the first comprehensive, multi-object, multi-defect dataset for anomaly detection that provides pixel-accurate ground truth regions and focuses on real-world applications.

675 citations

Posted Content
TL;DR: A structured and comprehensive overview of research methods in deep learning-based anomaly detection, grouped state-of-the-art research techniques into different categories based on the underlying assumptions and approach adopted.
Abstract: Anomaly detection is an important problem that has been well-studied within diverse research areas and application domains. The aim of this survey is two-fold, firstly we present a structured and comprehensive overview of research methods in deep learning-based anomaly detection. Furthermore, we review the adoption of these methods for anomaly across various application domains and assess their effectiveness. We have grouped state-of-the-art research techniques into different categories based on the underlying assumptions and approach adopted. Within each category we outline the basic anomaly detection technique, along with its variants and present key assumptions, to differentiate between normal and anomalous behavior. For each category, we present we also present the advantages and limitations and discuss the computational complexity of the techniques in real application domains. Finally, we outline open issues in research and challenges faced while adopting these techniques.

522 citations