scispace - formally typeset
Search or ask a question
Author

Flávio Vieira Meirelles

Bio: Flávio Vieira Meirelles is an academic researcher from University of São Paulo. The author has contributed to research in topics: Somatic cell nuclear transfer & Blastocyst. The author has an hindex of 35, co-authored 204 publications receiving 4365 citations. Previous affiliations of Flávio Vieira Meirelles include Laboratory of Molecular Biology & Université de Montréal.


Papers
More filters
Journal ArticleDOI
TL;DR: The objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development.

283 citations

Journal ArticleDOI
01 Feb 1997-Genetics
TL;DR: Although some initial lineages appear to segregate rapidly to homoplasmy, within two generations other lineages transmit stable amounts of both mtDNA molecules, supporting a mechanism where mitochondria of different origin may fuse, leading to persistent intraorganellar heteroplas my.
Abstract: Mitochondrial genotypes have been shown to segregate both rapidly and slowly when transmitted to consecutive generations in mammals. Our objective was to develop an animal model to analyze the patterns of mammalian mitochondrial DNA (mtDNA) segregation and transmission in an intraspecific heteroplasmic maternal lineage to investigate the mechanisms controlling these phenomena. Heteroplasmic progeny were obtained from reconstructed blastocysts derived by transplantation of pronuclear-stage karyoplasts to enucleated zygotes with different mtDNA. Although the reconstructed zygotes contained on average 19% mtDNA of karyoplast origin, most progeny contained fewer mtDNA of karyoplast origin and produced exclusively homoplasmic first generation progeny. However, one founder heteroplasmic adult female had elevated tissue heteroplasmy levels, varying from 6% (lung) to 69% (heart), indicating that stringent replicative segregation had occurred during mitotic divisions. First generation progeny from the above female were all heteroplasmic, indicating that, despite a meiotic segregation, they were derived from heteroplasmic founder oocytes. Some second and third generation progeny contained exclusively New Zealand Black/BINJ mtDNA, suggesting, but not confirming, an origin from an homoplasmic oocyte. Moreover, several third to fifth generation individuals maintained mtDNA from both mouse strains, indicating a slow or persistent segregation pattern characterized by diminished tissue and litter variability beyond second generation progeny. Therefore, although some initial lineages appear to segregate rapidly to homoplasmy, within two generations other lineages transmit stable amounts of both mtDNA molecules, supporting a mechanism where mitochondria of different origin may fuse, leading to persistent intraorganellar heteroplasmy.

162 citations

Journal ArticleDOI
01 May 2001-Genetics
TL;DR: The results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.
Abstract: Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.

157 citations

Journal ArticleDOI
TL;DR: Some of the advances in developmental block knowledge are reviewed and a possible role of active embryo transcription that drives incompetent embryos to block and death is described.

143 citations

Journal ArticleDOI
TL;DR: These findings provide evidence of a greater sensitivity of RB oocytes to summer HS and suggest that the association of RB fertility problems and summer HS may potentially impair oocyte quality.

142 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
05 Mar 1999-Science
TL;DR: The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology.
Abstract: Over the past 10 years, mitochondrial defects have been implicated in a wide variety of degenerative diseases, aging, and cancer. Studies on patients with these diseases have revealed much about the complexities of mitochondrial genetics, which involves an interplay between mutations in the mitochondrial and nuclear genomes. However, the pathophysiology of mitochondrial diseases has remained perplexing. The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology. The importance and interrelationship of these functions are now being studied in mouse models of mitochondrial disease.

2,950 citations

Journal ArticleDOI
TL;DR: This review explores the advances that have been made and the areas in which future progress is likely in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer.
Abstract: The human mitochondrial genome is extremely small compared with the nuclear genome, and mitochondrial genetics presents unique clinical and experimental challenges. Despite the diminutive size of the mitochondrial genome, mitochondrial DNA (mtDNA) mutations are an important cause of inherited disease. Recent years have witnessed considerable progress in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer. However, many challenges remain, including the prevention and treatment of these diseases. This review explores the advances that have been made and the areas in which future progress is likely.

1,525 citations

Journal ArticleDOI
TL;DR: This review considers the basic principles of mitochondrial genetics which govern both the behaviour and investigation of pathogenic mtDNA mutations summarizing recent advances, and an assessment of the ongoing debate into the role of somatic mt DNA mutations in neurodegenerative disease, ageing and cancer.
Abstract: Since their first association with human disease in 1988, more than 250 pathogenic point mutations and rearrangements of the 16.6 kb mitochondrial genome (mtDNA) have been reported in a spectrum of clinical disorders which exhibit prominent muscle and central nervous system involvement. With novel mutations and disease phenotypes still being described, mtDNA disorders are recognized collectively as common, inherited genetic diseases although relatively little is still known concerning the precise pathophysiological mechanisms that lead to cell dysfunction and pathology. This review considers the basic principles of mitochondrial genetics which govern both the behaviour and investigation of pathogenic mtDNA mutations summarizing recent advances in this area, and an assessment of the ongoing debate into the role of somatic mtDNA mutations in neurodegenerative disease, ageing and cancer.

1,011 citations