scispace - formally typeset
Search or ask a question
Author

Florence Demenais

Bio: Florence Demenais is an academic researcher from French Institute of Health and Medical Research. The author has contributed to research in topics: Genome-wide association study & Population. The author has an hindex of 58, co-authored 225 publications receiving 13069 citations. Previous affiliations of Florence Demenais include Institut Gustave Roussy & Foundation Center.


Papers
More filters
Journal ArticleDOI
TL;DR: A few common alleles are associated with disease risk at all ages and suggest a role for communication of epithelial damage to the adaptive immune system and activation of airway inflammation in asthma.
Abstract: A b s t r ac t Background Susceptibility to asthma is influenced by genes and environment; implicated genes may indicate pathways for therapeutic intervention. Genetic risk factors may be useful in identifying subtypes of asthma and determining whether intermediate phenotypes, such as elevation of the total serum IgE level, are causally linked to disease. Methods We carried out a genomewide association study by genotyping 10,365 persons with physician-diagnosed asthma and 16,110 unaffected persons, all of whom were matched for ancestry. We used random-effects pooled analysis to test for association in the overall study population and in subgroups of subjects with childhood-onset asthma (defined as asthma developing before 16 years of age), later-onset asthma, severe asthma, and occupational asthma. Results We observed associations of genomewide significance between asthma and the following single-nucleotide polymorphisms: rs3771166 on chromosome 2, implicating IL1RL1/IL18R1 (P =3×10 −9 ); rs9273349 on chromosome 6, implicating HLA-DQ (P = 7×10 −14 ); rs1342326 on chromosome 9, flanking IL33 (P = 9×10 −10 ); rs744910 on chromosome 15 in SMAD3 (P = 4×10 −9 ); and rs2284033 on chromosome 22 in IL2RB (P = 1.1×10 −8 ). Association with the ORMDL3/GSDMB locus on chromosome 17q21 was specific to childhood-onset disease (rs2305480, P = 6×10 −23 ). Only HLA-DR showed a significant genomewide association with the total serum IgE concentration, and loci strongly associated with IgE levels were not associated with asthma. Conclusions Asthma is genetically heterogeneous. A few common alleles are associated with disease risk at all ages. Implicated genes suggest a role for communication of epithelial damage to the adaptive immune system and activation of airway inflammation. Variants at the ORMDL3/GSDMB locus are associated only with childhood-onset disease. Elevation of total serum IgE levels has a minor role in the development of asthma. (Funded by the European Commission and others.)

1,764 citations

Journal ArticleDOI
Corine Bertolotto1, Fabienne Lesueur2, Sandy Giuliano3, Thomas Strub4, Mahaut de Lichy5, Karine Bille6, Philippe Dessen7, Benoit d’Hayer5, Hamida Mohamdi, Audrey Remenieras, Eve Maubec8, Arnaud de la Fouchardière, Vincent Molinié, Pierre Vabres9, Stéphane Dalle10, N. Poulalhon10, Tanguy Martin-Denavit10, Luc Thomas10, Pascale Andry-Benzaquen8, Nicolas Dupin8, F. Boitier8, Annick Rossi, Jean-Luc Perrot, Bruno Labeille, Caroline Robert5, Bernard Escudier5, Olivier Caron5, Laurence Brugières5, Simon Saule7, Betty Gardie7, Sophie Gad7, Stéphane Richard7, Jérôme Couturier11, Bin Tean Teh, Paola Ghiorzo, Lorenza Pastorino12, Susana Puig13, Celia Badenas13, Håkan Olsson14, Christian Ingvar14, Etienne Rouleau11, Rosette Lidereau11, Philippe Bahadoran1, Philippe Vielh5, Eve Corda8, Hélène Blanché8, Diana Zelenika, Pilar Galan, François Aubin, Bertrand Bachollet5, Celine Becuwe, Pascaline Berthet, Yves-Jean Bignon, Valérie Bonadona, Jean -Louis Bonafe, Marie -Noelle Bonnet-Dupeyron, Frédéric Cambazard, Jacqueline Chevrant-Breton, Isabelle Coupier, Sophie Dalac, Liliane Demange, Michel D'Incan, Catherine Dugast, Laurence Faivre, Lynda Vincent-Fetita8, Marion Gauthier-Villars11, Brigitte Gilbert, Florent Grange, Jean-Jacques Grob15, Philippe Humbert, Nicolas Janin, Pascal Joly, Delphine Kerob8, Christine Lasset, Dominique Leroux16, Julien Levang, Jean -Marc Limacher, Cristina Bulai Livideanu, Michel Longy17, Alain Lortholary, Dominique Stoppa-Lyonnet11, Sandrine Mansard, Ludovic Mansuy, Karine Marrou, Christine Mateus5, Christine Maugard4, Nicolas Meyer18, Catherine Noguès, Pierre Souteyrand, Laurence Venat-Bouvet, Hélène Zattara15, Valérie Chaudru19, Gilbert M. Lenoir7, Mark Lathrop, Irwin Davidson4, Marie-Françoise Avril8, Florence Demenais, Robert Ballotti1, Brigitte Bressac-de Paillerets6 
01 Dec 2011-Nature
TL;DR: A germline missense substitution in MITF (Mi-E318K) is identified that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls and provides insights into the link between SUMOylation, transcription and cancer.
Abstract: So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.

459 citations

Journal ArticleDOI
TL;DR: This study indicates that the penetrance of CDKN2A mutation penetrance varies with melanoma population incidence rates, and suggests that the same factors that affect population incidence of melanoma may also mediate CD KN2A penetrance.
Abstract: Background: Germline mutations in the CDKN2A gene, which encodes two proteins (p16INK4A and p14ARF), are the most common cause of inherited susceptibility to melanoma. We examined the penetrance of such mutations using data from eight groups from Europe, Australia and the United States that are part of The Melanoma Genetics Consortium Methods: We analyzed 80 families with documented CDKN2A mutations and multiple cases of cutaneous melanoma. We modeled penetrance for melanoma using a logistic regression model incorporating survival analysis. Hypothesis testing was based on likelihood ratio tests. Covariates included gender, alterations in p14APF protein, and population melanoma incidence rates. All statistical tests were two-sided. Results: The 80 analyzed families contained 402 melanoma patients, 320 of whom were tested for mutations and 291 were mutation carriers. We also tested 713 unaffected family members for mutations and 194 were carriers. Overall, CDKN2A mutation penetrance was estimated to be 0.30 (95% confidence interval (CI) = 0.12 to 0.62) by age 50 years and 0.67 (95% CI = 0.31 to 0.96) by age 80 years. Penetrance was not statistically significantly modified by gender or by whether the CDKN2A mutation altered p14ARF protein. However, there was a statistically significant effect of residing in a location with a high population incidence rate of melanoma (P = .003). By age 50 years CDKN2A mutation penetrance reached 0.13 in Europe, 0.50 in the United States, and 0.32 in Australia; by age 80 years it was 0.58 in Europe, 0.76 in the United States, and 0.91 in Australia. Conclusions: This study, which gives the most informed estimates of CDKN2A mutation penetrance available, indicates that the penetrance varies with melanoma population incidence rates. Thus, the same factors that affect population incidence of melanoma may also mediate CDKN2A penetrance.

449 citations

Journal ArticleDOI
TL;DR: Despite wide variation in allele frequency, these genetic variants show notable homogeneity of effect across populations of European ancestry living at different latitudes and show independent association to disease risk.
Abstract: We report a genome-wide association study of melanoma conducted by the GenoMEL consortium based on 317K tagging SNPs for 1,650 selected cases and 4,336 controls, with replication in an additional two cohorts (1,149 selected cases and 964 controls from GenoMEL, and a population-based case-control study in Leeds of 1,163 cases and 903 controls). The genome-wide screen identified five loci with genotyped or imputed SNPs reaching P < 5 x 10(-7). Three of these loci were replicated: 16q24 encompassing MC1R (combined P = 2.54 x 10(-27) for rs258322), 11q14-q21 encompassing TYR (P = 2.41 x 10(-14) for rs1393350) and 9p21 adjacent to MTAP and flanking CDKN2A (P = 4.03 x 10(-7) for rs7023329). MC1R and TYR are associated with pigmentation, freckling and cutaneous sun sensitivity, well-recognized melanoma risk factors. Common variants within the 9p21 locus have not previously been associated with melanoma. Despite wide variation in allele frequency, these genetic variants show notable homogeneity of effect across populations of European ancestry living at different latitudes and show independent association to disease risk.

438 citations

Journal ArticleDOI
TL;DR: This study shows that the increased risk of asthma conferred by 17q21 genetic variants is restricted to early-onset asthma and that the risk is further increased by early-life exposure to environmental tobacco smoke.
Abstract: BACKGROUND: A genomewide association study has shown an association between variants at chromosome 17q21 and an increased risk of asthma. To elucidate the relationship between this locus and disease, we examined a large, family-based data set that included extensive phenotypic and environmental data from the Epidemiological Study on the Genetics and Environment of Asthma. METHODS: We tested 36 single-nucleotide polymorphisms (SNPs) in the 17q21 region in 1511 subjects from 372 families for an association with asthma. We also tested for genetic heterogeneity according to the age at the onset of asthma and exposure to environmental tobacco smoke in early life. RESULTS: Eleven SNPs were significantly associated with asthma (P<0.01), of which three (rs8069176, rs2305480, and rs4795400) were strongly associated (P<0.001). Ordered-subset regression analysis led us to select an onset at 4 years of age or younger to classify patients as having early-onset asthma. Association with early-onset asthma was highly significant (P<10(-5) for four SNPs), whereas no association was found with late-onset asthma. With respect to exposure to environmental tobacco smoke in early life, we observed a significant association with early-onset asthma only in exposed subjects (P<5x10(-5) for six SNPs). Under the best-fitting recessive model, homozygous status (GG) at the most strongly associated SNP (rs8069176) conferred an increase in risk by a factor of 2.9, as compared with other genotypes (AG and AA) in the group exposed to environmental tobacco smoke (P=2.8x10(-6); P=0.006 for the test for heterogeneity of the SNP effect on early-onset asthma between groups with tobacco exposure and those without such exposure). CONCLUSIONS: This study shows that the increased risk of asthma conferred by 17q21 genetic variants is restricted to early-onset asthma and that the risk is further increased by early-life exposure to environmental tobacco smoke. These findings provide a greater understanding of the functional role of the 17q21 variants in the pathophysiology of asthma.

383 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2010

5,842 citations

Journal ArticleDOI
22 Oct 1998-Nature
TL;DR: The role of leptin in the control of body weight and its relevance to the pathogenesis of obesity are reviewed.
Abstract: The assimilation, storage and use of energy from nutrients constitute a homeostatic system that is essential for life In vertebrates, the ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution However, the presence of excess adipose tissue can be maladaptive A complex physiological system has evolved to regulate fuel stores and energy balance at an optimum level Leptin, a hormone secreted by adipose tissue, and its receptor are integral components of this system Leptin also signals nutritional status to several other physiological systems and modulates their function Here we review the role of leptin in the control of body weight and its relevance to the pathogenesis of obesity

5,335 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
30 Sep 1994-Science
TL;DR: This article synthesizes the current state of the genetic dissection of complex traits--describing the methods, limitations, and recent applications to biological problems.
Abstract: Medical genetics was revolutionized during the 1980s by the application of genetic mapping to locate the genes responsible for simple Mendelian diseases. Most diseases and traits, however, do not follow simple inheritance patterns. Genetics have thus begun taking up the even greater challenge of the genetic dissection of complex traits. Four major approaches have been developed: linkage analysis, allele-sharing methods, association studies, and polygenic analysis of experimental crosses. This article synthesizes the current state of the genetic dissection of complex traits--describing the methods, limitations, and recent applications to biological problems.

3,216 citations