scispace - formally typeset
Search or ask a question
Author

Florence Tupin

Bio: Florence Tupin is an academic researcher from Télécom ParisTech. The author has contributed to research in topics: Synthetic aperture radar & Radar imaging. The author has an hindex of 36, co-authored 223 publications receiving 5786 citations. Previous affiliations of Florence Tupin include Centre national de la recherche scientifique & Institut Mines-Télécom.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed filter is an extension of the nonlocal means (NL means) algorithm introduced by Buades, which performs a weighted average of the values of similar pixels which depends on the noise distribution model.
Abstract: Image denoising is an important problem in image processing since noise may interfere with visual or automatic interpretation. This paper presents a new approach for image denoising in the case of a known uncorrelated noise model. The proposed filter is an extension of the nonlocal means (NL means) algorithm introduced by Buades, which performs a weighted average of the values of similar pixels. Pixel similarity is defined in NL means as the Euclidean distance between patches (rectangular windows centered on each two pixels). In this paper, a more general and statistically grounded similarity criterion is proposed which depends on the noise distribution model. The denoising process is expressed as a weighted maximum likelihood estimation problem where the weights are derived in a data-driven way. These weights can be iteratively refined based on both the similarity between noisy patches and the similarity of patches extracted from the previous estimate. We show that this iterative process noticeably improves the denoising performance, especially in the case of low signal-to-noise ratio images such as synthetic aperture radar (SAR) images. Numerical experiments illustrate that the technique can be successfully applied to the classical case of additive Gaussian noise but also to cases such as multiplicative speckle noise. The proposed denoising technique seems to improve on the state of the art performance in that latter case.

664 citations

Journal ArticleDOI
TL;DR: The authors propose a two-step algorithm for almost unsupervised detection of linear structures, in particular, main axes in road networks, as seen in synthetic aperture radar (SAR) images.
Abstract: The authors propose a two-step algorithm for almost unsupervised detection of linear structures, in particular, main axes in road networks, as seen in synthetic aperture radar (SAR) images. The first step is local and is used to extract linear features from the speckle radar image, which are treated as road-segment candidates. The authors present two local line detectors as well as a method for fusing information from these detectors. In the second global step, they identify the real roads among the segment candidates by defining a Markov random field (MRF) on a set of segments, which introduces contextual knowledge about the shape of road objects. The influence of the parameters on the road detection is studied and results are presented for various real radar images.

478 citations

Journal ArticleDOI
TL;DR: A SIFT-like algorithm specifically dedicated to SAR imaging, which includes both the detection of keypoints and the computation of local descriptors, and an application of SAR-SIFT to the registration of SAR images in different configurations, particularly with different incidence angles is presented.
Abstract: The scale-invariant feature transform (SIFT) algorithm and its many variants are widely used in computer vision and in remote sensing to match features between images or to localize and recognize objects. However, mostly because of speckle noise, it does not perform well on synthetic aperture radar (SAR) images. In this paper, we introduce a SIFT-like algorithm specifically dedicated to SAR imaging, which is named SAR-SIFT. The algorithm includes both the detection of keypoints and the computation of local descriptors. A new gradient definition, yielding an orientation and a magnitude that are robust to speckle noise, is first introduced. It is then used to adapt several steps of the SIFT algorithm to SAR images. We study the improvement brought by this new algorithm, as compared with existing approaches. We present an application of SAR-SIFT to the registration of SAR images in different configurations, particularly with different incidence angles.

414 citations

Journal ArticleDOI
TL;DR: A mathematical model that relies on the Fisher distribution and the log-moment estimation and which is relevant for one-look data is used, and its accuracy for urban areas at high resolution is proved.
Abstract: We propose a classification method suitable for high-resolution synthetic aperture radar (SAR) images over urban areas. When processing SAR images, there is a strong need for statistical models of scattering to take into account multiplicative noise and high dynamics. For instance, the classification process needs to be based on the use of statistics. Our main contribution is the choice of an accurate model for high-resolution SAR images over urban areas and its use in a Markovian classification algorithm. Clutter in SAR images becomes non-Gaussian when the resolution is high or when the area is man-made. Many models have been proposed to fit with non-Gaussian scattering statistics (K, Weibull, Log-normal, Nakagami-Rice, etc.), but none of them is flexible enough to model all kinds of surfaces in our context. As a consequence, we use a mathematical model that relies on the Fisher distribution and the log-moment estimation and which is relevant for one-look data. This estimation method is based on the second-kind statistics, which are detailed in the paper. We also prove its accuracy for urban areas at high resolution. The quality of the classification that is obtained by mixing this model and a Markovian segmentation is high and enables us to distinguish between ground, buildings, and vegetation.

399 citations

Journal ArticleDOI
TL;DR: A general method, i.e., NL-SAR, that builds extended nonlocal neighborhoods for denoising amplitude, polarimetric, and/or interferometric SAR images, and the best one is locally selected to form a single restored image with good preservation of radar structures and discontinuities is described.
Abstract: Speckle noise is an inherent problem in coherent imaging systems like synthetic aperture radar. It creates strong intensity fluctuations and hampers the analysis of images and the estimation of local radiometric, polarimetric or interferometric properties. SAR processing chains thus often include a multi-looking (i.e., averaging) filter for speckle reduction, at the expense of a strong resolution loss. Preservation of point-like and fine structures and textures requires to adapt locally the estimation. Non-local means successfully adapt smoothing by deriving data-driven weights from the similarity between small image patches. The generalization of non-local approaches offers a flexible framework for resolution-preserving speckle reduction. We describe a general method, NL-SAR, that builds extended non-local neighborhoods for denoising amplitude, polarimetric and/or interferometric SAR images. These neighborhoods are defined on the basis of pixel similarity as evaluated by multi-channel comparison of patches. Several non-local estimations are performed and the best one is locally selected to form a single restored image with good preservation of radar structures and discontinuities. The proposed method is fully automatic and handles single and multi-look images, with or without interferometric or polarimetric channels. Efficient speckle reduction with very good resolution preservation is demonstrated both on numerical experiments using simulated data, airborne and spaceborne radar images. The source code of a parallel implementation of NL-SAR is released with the paper.

378 citations


Cited by
More filters
01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations

Reference EntryDOI
15 Oct 2004

2,118 citations

Journal ArticleDOI
01 Mar 2013
TL;DR: Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper and several techniques are investigated for combining both spatial and spectral information.
Abstract: Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

1,225 citations

ReportDOI
01 Apr 2002
TL;DR: This report surveys a number of possible combination rules for Dempster-Shafer structures and provides examples of the implementation of these rules for discrete and interval-valued data.
Abstract: Dempster-Shafer theory offers an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. The significant innovation of this framework is that it allows for the allocation of a probability mass to sets or intervals. Dempster-Shafer theory does not require an assumption regarding the probability of the individual constituents of the set or interval. This is a potentially valuable tool for the evaluation of risk and reliability in engineering applications when it is not possible to obtain a precise measurement from experiments, or when knowledge is obtained from expert elicitation. An important aspect of this theory is the combination of evidence obtained from multiple sources and the modeling of conflict between them. This report surveys a number of possible combination rules for Dempster-Shafer structures and provides examples of the implementation of these rules for discrete and interval-valued data.

1,033 citations