scispace - formally typeset
Search or ask a question
Author

Florent Ravaux

Bio: Florent Ravaux is an academic researcher from Khalifa University. The author has contributed to research in topics: Materials science & Carbon nanotube. The author has an hindex of 11, co-authored 32 publications receiving 507 citations. Previous affiliations of Florent Ravaux include university of lille & Masdar Institute of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that Dox-Ald@AgNPs had significantly greater anti-cancer activity in vitro than either Ald or Dox alone and can accommodate the attachment of other drugs as well as targeting agents and therefore constitute a general platform for drug delivery.
Abstract: We present the synthesis of a silver nanoparticle (AgNP) based drug-delivery system that achieves the simultaneous intracellular delivery of doxorubicin (Dox) and alendronate (Ald) and improves the anticancer therapeutic indices of both drugs. Water, under microwave irradiation, was used as the sole reducing agent in the size-controlled, bisphosphonate-mediated synthesis of stabilized AgNPs. AgNPs were coated with the bisphosphonate Ald, which templated nanoparticle formation and served as a site for drug attachment. The unreacted primary ammonium group of Ald remained free and was subsequently functionalized with either Rhodamine B (RhB), through amide formation, or Dox, through imine formation. The RhB-conjugated NPs (RhB–Ald@AgNPs) were studied in HeLa cell culture. Experiments involving the selective inhibition of cell membrane receptors were monitored by confocal fluorescence microscopy and established that macropinocytosis and clathrin-mediated endocytosis were the main mechanisms of cellular uptake. The imine linker of the Dox-modified nanoparticles (Dox–Ald@AgNPs) was exploited for acid-mediated intracellular release of Dox. We found that Dox–Ald@AgNPs had significantly greater anti-cancer activity in vitro than either Ald or Dox alone. Ald@AgNPs can accommodate the attachment of other drugs as well as targeting agents and therefore constitute a general platform for drug delivery.

115 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and characterization of covalent organic polymers composed of cyclotriphosphazene core moieties linked together by redox-switchable viologen units was reported.
Abstract: The immobilization of molecular switches within materials can give rise to new bulk properties that are useful for a variety of applications. Here, we report the synthesis and characterization of covalent organic polymers composed of cyclotriphosphazene core moieties linked together by redox-switchable viologen units. The polymers are isolated as non-porous, micro- and nano-sized spherical particles whose constituent viologens allow access to three distinct redox states: dicationic, radical-cationic and neutral. With viologens in their dicationic state, the particles were used for magic printing, gaseous ammonia sensing, and efficient oxoanion capture. With viologens in any oxidation state, the polymers were capable of capturing 200 to 380% of their weight of iodine vapor. Iodine capture within all of the viologen-based polymers was fast, requiring minutes, as compared to capture by previously reported polymers, which requires hours. With viologens in their neutral state, the polymers exhibited the highest iodine loadings reported to date. Upon one and two-electron reduction, the polymers partially or completely lost their cationic character and, concomitantly, their anion removal capability.

101 citations

Journal ArticleDOI
TL;DR: In this paper, a uniform coverage of MoS2 HNPs with a thickness around 20 nm is achieved by chemical vapor deposition technique, and the results confirm that the CNT template plays an important role in the growth of the HNP.
Abstract: Hexagonal-shaped nanoplates (HNPs) of MoS2 on vertically aligned carbon nanotubes (CNTs) over a patterned area (a circular area of 1 cm2 diameter) are produced by chemical vapor deposition technique With an optimized initial Mo film thickness, a uniform coverage of MoS2 HNPs with a thickness around 20 nm is achieved The results confirm that the CNT template plays an important role in the MoS2 HNPs growth Each MoS2 HNP consists of abundant exposed edges, interesting for sensing and catalysis applications High crystallinity and quality of the as-produced material are revealed by X-ray photoelectron and Raman spectroscopies Furthermore, NO2 gas-sensing studies show better sensitivity and recovery for MoS2/CNT samples as compared to pristine CNTs The detection of NO2 gas in a few tens of parts per million to a few hundreds of parts per billion range, at room temperature, is achieved Density-functional theory calculation indicates that the exposed edges of MoS2 play a significant role in the NO2 sensing as compared to horizontally aligned MoS2 layers The present report can promote the research toward the fabrication of efficient and reliable MoS2-based hybrid materials for toxic gas-sensing applications for air quality monitoring in various environments

73 citations

Journal ArticleDOI
TL;DR: A light-responsive azobenzene-functionalized covalent organic framework (TTA-AzoDFP) designed in a way that the pendent azo groups are pointing towards the pore channels with sufficient free volume necessary for the unencumbered dynamic motion to occur inside the pores of the COF and undergo a reversible trans-cis photoisomerization upon light irradiation is reported.
Abstract: Light-operated materials have gained significant attention for their potential technological importance. To achieve molecular motion within extended networks, stimuli-responsive units require free space. The majority of the so far reported 2D-extended organic networks with responsive moieties restrict their freedom of motion on account of their connectivity providing constrained free volume for efficient molecular motion. We report here a light-responsive azobenzene-functionalized covalent organic framework (TTA-AzoDFP) designed in a way that the pendent azobenzene groups are pointing toward the pore channels with sufficient free volume necessary for the unencumbered dynamic motion to occur inside the pores of the covalent organic framework (COF) and undergo a reversible trans-cis photoisomerization upon light irradiation. The resulting hydrophobic COF was used for the storage of rhodamine B and its controlled release in solution by the mechanical motion of the azobenzene units triggered by ultraviolet-light irradiation. The TTA-AzoDFP displayed unprecedented photoregulated fluorescence emission behavior upon UV-light irradiation. Size, emission, and degree of hydrophobicity with respect to trans-cis-trans photoisomerization could be reversibly controlled by alternating UV- and visible-light exposure. The results reported here demonstrate once again the importance of the careful design of the linkers not only to allow the incorporation of molecular switches within the chemical structure of COFs but also to provide the required free space for not hindering their motion. The results demonstrate that responsive COFs could be suitable platforms for delivery systems that can be controlled by external stimuli.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the synthesis and characterization of the first porous covalent calix[4]arene-based polymer (CalP) and its use for water purification.
Abstract: The development of novel materials for removal of organic contaminants from water is of global importance for the preservation of the environment. Here, we describe the synthesis and characterization of the first porous covalent calix[4]arene-based polymer (CalP) and its use for water purification. CalP has a high surface area, large pore volume and excellent sorption capacity for a range of organic solvents, oils, and toxic dyes. The polymer can selectively absorb up to seven times its weight of oil from oil/water mixtures. From aqueous solutions, it can adsorb both anionic and cationic dyes in under 15 minutes. Its uptake capacity is significantly higher than those of the most adsorbent materials reported to date, including commercial activated carbon. Additionally, the polymer can be easily regenerated using mild washing procedures and reused several times with no loss of absorption efficiency.

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based Nanostructure.
Abstract: During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.

773 citations

Journal ArticleDOI
TL;DR: A state-of-the-art review on the synthesis of AgNPs, and their applications in antimicrobial textile fabrics, food packaging films, and wound dressings is provided.
Abstract: Silver nanoparticles (AgNPs) can be synthesized from a variety of techniques including physical, chemical and biological routes. They have been widely used as nanomaterials for manufacturing cosmetic and healthcare products, antimicrobial textiles, wound dressings, antitumor drug carriers, etc. due to their excellent antimicrobial properties. Accordingly, AgNPs have gained access into our daily life, and the inevitable human exposure to these nanoparticles has raised concerns about their potential hazards to the environment, health, and safety in recent years. From in vitro cell cultivation tests, AgNPs have been reported to be toxic to several human cell lines including human bronchial epithelial cells, human umbilical vein endothelial cells, red blood cells, human peripheral blood mononuclear cells, immortal human keratinocytes, liver cells, etc. AgNPs induce a dose-, size- and time-dependent cytotoxicity, particularly for those with sizes ≤10 nm. Furthermore, AgNPs can cross the brain blood barrier of mice through the circulation system on the basis of in vivo animal tests. AgNPs tend to accumulate in mice organs such as liver, spleen, kidney and brain following intravenous, intraperitoneal, and intratracheal routes of administration. In this respect, AgNPs are considered a double-edged sword that can eliminate microorganisms but induce cytotoxicity in mammalian cells. This article provides a state-of-the-art review on the synthesis of AgNPs, and their applications in antimicrobial textile fabrics, food packaging films, and wound dressings. Particular attention is paid to the bactericidal activity and cytotoxic effect in mammalian cells.

510 citations

Journal ArticleDOI
TL;DR: An overview of the field`s understanding of how nanoparticle physicochemical properties affect cellular interactions is summarized, cellular internalization pathways are reviewed, and intracellular nanoparticle trafficking and kinetics are explored.

456 citations

Journal ArticleDOI
TL;DR: This review focuses on analysing the historic developments of COFs to uncover a full materials and application picture by providing comprehensive yet clear guidance for molecular design, synthetic control and functional exploration.
Abstract: Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended two- and three-dimensional polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores. This polymer architecture is unique as it enables predesigning both primary- and high-order structures, greatly enhancing our capabilities of designing organic materials to produce predictable structures and to achieve unique properties and functions. Progress over the past 15 years in the design, synthesis and functional exploration of COFs has successively established the basis of the COF field and COFs have shown the great potential of chemistry in developing a class of amazing organic materials. In this review, we focus on analysing the historic developments of COFs to uncover a full materials and application picture by providing comprehensive yet clear guidance for molecular design, synthetic control and functional exploration. We scrutinise the structural components of COFs including building blocks, reactive sites and functional groups with the aim of finding the origins of structural designability and diversity, as well as multiple functionalities. We disclose strategies for designing and synthesising frameworks to construct various tailor-made interfaces, and for exploring skeletons and pores to design properties and functions. With well-defined skeletons, pores and interfaces that offer a chemical basis to trigger and control interactions with photons, excitons, phonons, polarons, electrons, holes, spins, ions and molecules, we illustrate the current status of our understandings of structure-property correlations, and unveil the principles for establishing a regime to design unique functions that originate from and are inherent to structures. We predict the key central issues in design and synthesis, the challenges in functional design and the future directions from the perspectives of chemistry, physics and materials science.

329 citations