scispace - formally typeset
Search or ask a question
Author

Florette K. Treurnicht

Bio: Florette K. Treurnicht is an academic researcher from National Health Laboratory Service. The author has contributed to research in topics: Medicine & Population. The author has an hindex of 23, co-authored 79 publications receiving 3904 citations. Previous affiliations of Florette K. Treurnicht include University of the Witwatersrand & University of Cape Town.


Papers
More filters
Journal ArticleDOI
A. Danielle Iuliano1, Katherine Roguski1, Howard H. Chang2, David Muscatello3, Rakhee Palekar4, Stefano Tempia1, Cheryl Cohen5, Jon Michael Gran6, Jon Michael Gran7, Dena L. Schanzer, Benjamin J. Cowling8, Peng Wu8, Jan Kynčl, Li Wei Ang9, Minah Park8, Monika Redlberger-Fritz10, Hongjie Yu11, Laura Espenhain12, Anand Krishnan13, Gideon O. Emukule1, Liselotte van Asten, Susana Silva, Suchunya Aungkulanon14, Udo Buchholz15, Marc-Alain Widdowson1, Joseph S. Bresee1, Eduardo Azziz-Baumgartner, Po-Yung Cheng, Fatimah S. Dawood, Ivo M. Foppa, Sonja J. Olsen, Michael Haber, Caprichia Jeffers, C. Raina MacIntyre, Anthony T. Newall, James G. Wood, Michael Kundi, Therese Popow-Kraupp, Makhdum Ahmed, Mahmudur Rahman, Fatima Marinho, C Viviana Sotomayor Proschle, Natalia Vergara Mallegas, Feng Luzhao, Li Sa, Juliana Barbosa-Ramírez, Diana Malo Sanchez, Leandra Abarca Gomez, Xiomara Badilla Vargas, aBetsy Acosta Herrera, María Josefa Llanés, Thea Kølsen Fischer, Tyra Grove Krause, Kåre Mølbak, Jens Nielsen, Ramona Trebbien, Alfredo Bruno, Jenny Ojeda, Hector Ramos, Matthias an der Heiden, Leticia del Carmen Castillo Signor, Carlos Enrique Serrano, Rohit Bhardwaj, Mandeep S. Chadha, Venkatesh Vinayak Narayan, Soewarta Kosen, Michal Bromberg, Aharona Glatman-Freedman, Zalman Kaufman, Yuzo Arima, Kazunori Oishi, Sandra S. Chaves, Bryan O. Nyawanda, Reem Abdullah Al-Jarallah, Pablo A Kuri-Morales, Cuitláhuac Ruiz Matus, Maria Eugenia Jimenez Corona, Alexander Burmaa, Oyungerel Darmaa, Majdouline Obtel, Imad Cherkaoui, Cees C van den Wijngaard, Wim van der Hoek, Michael G Baker, Don Bandaranayake, Ange Bissielo, Sue Huang, Liza Lopez, Claire Newbern, Elmira Flem, Gry M Grøneng, Siri Hauge, Federico G de Cosío, Yadira De Molto, Lourdes Moreno Castillo, María Agueda Cabello, Marta Von Horoch, José L. Medina Osis, Ausenda Machado, Baltazar Nunes, Ana Paula Rodrigues, Emanuel Rodrigues, Cristian Calomfirescu, Emilia Lupulescu, Rodica Popescu, Odette Popovici, Dragan Bogdanovic, Marina Kostic, Konstansa Lazarevic, Zoran Milosevic, Branislav Tiodorovic, Mark I-Cheng Chen, Jeffery Cutter, Vernon J. Lee, Raymond T. P. Lin, Stefan Ma, Adam L. Cohen, Florette K. Treurnicht, Woo Joo Kim, Concha Delgado-Sanz, Salvador de mateo Ontañón, Amparo Larrauri, Inmaculada León, Fernando Vallejo, Rita Born, Christoph Junker, Daniel Koch, Jen-Hsiang Chuang, Wan-Ting Huang, Hung-Wei Kuo, Yi-Chen Tsai, Kanitta Bundhamcharoen, Malinee Chittaganpitch, Helen K. Green, Richard Pebody, Natalia Goñi, Hector Chiparelli, Lynnette Brammer, Desiree Mustaquim 
TL;DR: These global influenza-associated respiratory mortality estimates are higher than previously reported, suggesting that previous estimates might have underestimated disease burden.

1,658 citations

Journal ArticleDOI
TL;DR: Influenza vaccine was immunogenic in HIV-uninfected and HIV-infected pregnant women and provided partial protection against confirmed influenza in both groups of women and in infants who were not exposed to HIV.
Abstract: Background There are limited data on the efficacy of vaccination against confirmed influenza in pregnant women with and those without human immunodeficiency virus (HIV) infection and protection of their infants. Methods We conducted two double-blind, randomized, placebo-controlled trials of trivalent inactivated influenza vaccine (IIV3) in South Africa during 2011 in pregnant women infected with HIV and during 2011 and 2012 in pregnant women who were not infected. The immunogenicity, safety, and efficacy of IIV3 in pregnant women and their infants were evaluated until 24 weeks after birth. Immune responses were measured with a hemagglutination inhibition (HAI) assay, and influenza was diagnosed by means of reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assays of respiratory samples. Results The study cohorts included 2116 pregnant women who were not infected with HIV and 194 pregnant women who were infected with HIV. At 1 month after vaccination, seroconversion rates and the proportion of partic...

435 citations

Journal ArticleDOI
TL;DR: In a combined analysis of 171 subtype B and C transmission events, it is found that infection with more than one variant does not follow a Poisson distribution, indicating that transmission of individual virions cannot be seen as independent events, each occurring with low probability.
Abstract: Identifying the specific genetic characteristics of successfully transmitted variants may prove central to the development of effective vaccine and microbicide interventions. Although human immunodeficiency virus transmission is associated with a population bottleneck, the extent to which different factors influence the diversity of transmitted viruses is unclear. We estimate here the number of transmitted variants in 69 heterosexual men and women with primary subtype C infections. From 1,505 env sequences obtained using a single genome amplification approach we show that 78% of infections involved single variant transmission and 22% involved multiple variant transmissions (median of 3). We found evidence for mutations selected for cytotoxic-T-lymphocyte or antibody escape and a high prevalence of recombination in individuals infected with multiple variants representing another potential escape pathway in these individuals. In a combined analysis of 171 subtype B and C transmission events, we found that infection with more than one variant does not follow a Poisson distribution, indicating that transmission of individual virions cannot be seen as independent events, each occurring with low probability. While most transmissions resulted from a single infectious unit, multiple variant transmissions represent a significant fraction of transmission events, suggesting that there may be important mechanistic differences between these groups that are not yet understood.

410 citations

Journal ArticleDOI
TL;DR: In this article , the authors identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections in South Africa, by using a multinomial logistic regression model.
Abstract: Abstract Three lineages (BA.1, BA.2 and BA.3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern predominantly drove South Africa’s fourth Coronavirus Disease 2019 (COVID-19) wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and similar to BA.2 except for the addition of 69–70 deletion (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild-type amino acid at Q493. The two lineages differ only outside of the spike region. The 69–70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimated growth advantages for BA.4 and BA.5 of 0.08 (95% confidence interval (CI): 0.08–0.09) and 0.10 (95% CI: 0.09–0.11) per day, respectively, over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus.

359 citations

Journal ArticleDOI
TL;DR: It is shown that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection, and the magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V 1-V2 region.
Abstract: The study of the evolution and specificities of neutralizing antibodies during the course of human immunodeficiency virus type 1 (HIV-1) infection may be important in the discovery of possible targets for vaccine design. In this study, we assessed the autologous and heterologous neutralization responses of 14 HIV-1 subtype C-infected individuals, using envelope clones obtained within the first 2 months postinfection. Our data show that potent but relatively strain-specific neutralizing antibodies develop within 3 to 12 months of HIV-1 infection. The magnitude of this response was associated with shorter V1-to-V5 envelope lengths and fewer glycosylation sites, particularly in the V1-V2 region. Anti-MPER antibodies were detected in 4 of 14 individuals within a year of infection, while antibodies to CD4-induced (CD4i) epitopes developed to high titers in 12 participants, in most cases before the development of autologous neutralizing antibodies. However, neither anti-MPER nor anti-CD4i antibody specificity conferred neutralization breadth. These data provide insights into the kinetics, potency, breadth, and epitope specificity of neutralizing antibody responses in acute HIV-1 subtype C infection.

326 citations


Cited by
More filters
Journal ArticleDOI
Gregory A. Roth1, Gregory A. Roth2, Degu Abate3, Kalkidan Hassen Abate4  +1025 moreInstitutions (333)
TL;DR: Non-communicable diseases comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2).

5,211 citations

Journal ArticleDOI
TL;DR: Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualization platform that presents a real-time view into the evolution and spread of a range of viral pathogens of high public health importance.
Abstract: Summary Understanding the spread and evolution of pathogens is important for effective public health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualization platform. Together these present a real-time view into the evolution and spread of a range of viral pathogens of high public health importance. The visualization integrates sequence data with other data types such as geographic information, serology, or host species. Nextstrain compiles our current understanding into a single accessible location, open to health professionals, epidemiologists, virologists and the public alike. Availability and implementation All code (predominantly JavaScript and Python) is freely available from github.com/nextstrain and the web-application is available at nextstrain.org.

2,305 citations

Journal Article
TL;DR: Male circumcision significantly reduces the risk of HIV acquisition in young men in Africa and should be integrated with other HIV preventive interventions and provided as expeditiously as possible.

1,692 citations

Journal ArticleDOI
A. Danielle Iuliano1, Katherine Roguski1, Howard H. Chang2, David Muscatello3, Rakhee Palekar4, Stefano Tempia1, Cheryl Cohen5, Jon Michael Gran6, Jon Michael Gran7, Dena L. Schanzer, Benjamin J. Cowling8, Peng Wu8, Jan Kynčl, Li Wei Ang9, Minah Park8, Monika Redlberger-Fritz10, Hongjie Yu11, Laura Espenhain12, Anand Krishnan13, Gideon O. Emukule1, Liselotte van Asten, Susana Silva, Suchunya Aungkulanon14, Udo Buchholz15, Marc-Alain Widdowson1, Joseph S. Bresee1, Eduardo Azziz-Baumgartner, Po-Yung Cheng, Fatimah S. Dawood, Ivo M. Foppa, Sonja J. Olsen, Michael Haber, Caprichia Jeffers, C. Raina MacIntyre, Anthony T. Newall, James G. Wood, Michael Kundi, Therese Popow-Kraupp, Makhdum Ahmed, Mahmudur Rahman, Fatima Marinho, C Viviana Sotomayor Proschle, Natalia Vergara Mallegas, Feng Luzhao, Li Sa, Juliana Barbosa-Ramírez, Diana Malo Sanchez, Leandra Abarca Gomez, Xiomara Badilla Vargas, aBetsy Acosta Herrera, María Josefa Llanés, Thea Kølsen Fischer, Tyra Grove Krause, Kåre Mølbak, Jens Nielsen, Ramona Trebbien, Alfredo Bruno, Jenny Ojeda, Hector Ramos, Matthias an der Heiden, Leticia del Carmen Castillo Signor, Carlos Enrique Serrano, Rohit Bhardwaj, Mandeep S. Chadha, Venkatesh Vinayak Narayan, Soewarta Kosen, Michal Bromberg, Aharona Glatman-Freedman, Zalman Kaufman, Yuzo Arima, Kazunori Oishi, Sandra S. Chaves, Bryan O. Nyawanda, Reem Abdullah Al-Jarallah, Pablo A Kuri-Morales, Cuitláhuac Ruiz Matus, Maria Eugenia Jimenez Corona, Alexander Burmaa, Oyungerel Darmaa, Majdouline Obtel, Imad Cherkaoui, Cees C van den Wijngaard, Wim van der Hoek, Michael G Baker, Don Bandaranayake, Ange Bissielo, Sue Huang, Liza Lopez, Claire Newbern, Elmira Flem, Gry M Grøneng, Siri Hauge, Federico G de Cosío, Yadira De Molto, Lourdes Moreno Castillo, María Agueda Cabello, Marta Von Horoch, José L. Medina Osis, Ausenda Machado, Baltazar Nunes, Ana Paula Rodrigues, Emanuel Rodrigues, Cristian Calomfirescu, Emilia Lupulescu, Rodica Popescu, Odette Popovici, Dragan Bogdanovic, Marina Kostic, Konstansa Lazarevic, Zoran Milosevic, Branislav Tiodorovic, Mark I-Cheng Chen, Jeffery Cutter, Vernon J. Lee, Raymond T. P. Lin, Stefan Ma, Adam L. Cohen, Florette K. Treurnicht, Woo Joo Kim, Concha Delgado-Sanz, Salvador de mateo Ontañón, Amparo Larrauri, Inmaculada León, Fernando Vallejo, Rita Born, Christoph Junker, Daniel Koch, Jen-Hsiang Chuang, Wan-Ting Huang, Hung-Wei Kuo, Yi-Chen Tsai, Kanitta Bundhamcharoen, Malinee Chittaganpitch, Helen K. Green, Richard Pebody, Natalia Goñi, Hector Chiparelli, Lynnette Brammer, Desiree Mustaquim 
TL;DR: These global influenza-associated respiratory mortality estimates are higher than previously reported, suggesting that previous estimates might have underestimated disease burden.

1,658 citations

Journal ArticleDOI
TL;DR: This report updates the 2017–18 recommendations of the Advisory Committee on Immunization Practices regarding the use of seasonal influenza vaccines in the United States and focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2018–19 season.
Abstract: This report updates the 2020-21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021-22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).The 2021-22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html.Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021-22 season are expected to be quadrivalent. Second, the composition of 2021-22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture-based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021-22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.

1,388 citations