scispace - formally typeset
Search or ask a question
Author

Florian Löhl

Bio: Florian Löhl is an academic researcher from Paul Scherrer Institute. The author has contributed to research in topics: Free-electron laser & Undulator. The author has an hindex of 14, co-authored 29 publications receiving 2297 citations. Previous affiliations of Florian Löhl include Cornell University & University of Hamburg.

Papers
More filters
Journal ArticleDOI
Wolfgang Ackermann1, G. Asova, Valeri Ayvazyan2, A. Azima2  +154 moreInstitutions (16)
TL;DR: In this paper, the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured.
Abstract: We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

1,390 citations

Journal ArticleDOI
Valeri Ayvazyan, N. Baboi, J. Bähr, V. Balandin, B. Beutner1, Andrew Brandt, I. Bohnet, A. Bolzmann, R. Brinkmann, O. I. Brovko2, Jean-Paul Carneiro, S. Casalbuoni, M. Castellano, P. Castro, L. Catani, Enrica Chiadroni, S. Choroba, Alessandro Cianchi, H. Delsim-Hashemi1, G. Di Pirro, Martin Dohlus, S. Düsterer, H. T. Edwards3, Bart Faatz, A.A. Fateev2, Josef Feldhaus, Klaus Flöttmann, Josef Frisch4, L. Fröhlich1, T. Garvey5, U. Gensch, N. Golubeva, H.-J. Grabosch, Bagrat Grigoryan6, O. Grimm, U. Hahn, J.H. Han, M.v. Hartrott, K. Honkavaara1, M. Hüning, Rasmus Ischebeck, E. Jaeschke, M. Jablonka, R. Kammering, V. Katalev, B. Keitel, Sergiy Khodyachykh, Y. Kim, Vitali Kocharyan, M. Körfer, M. Kollewe, D. Kostin, D. Krämer, Mikhail Krassilnikov, G. Kube, L. Lilje, T. Limberg, Dirk Lipka, Florian Löhl1, M. Luong, C. Magne, J. Menzel, Paolo Michelato, Velizar Miltchev, M. Minty, W.-D. Möller, Laura Monaco, Wolfgang Franz Otto Müller7, M. Nagl, Olivier Napoly, Piergiorgio Nicolosi8, Dirk Nölle, T. Nunez, Anne Oppelt, Carlo Pagani, R. Paparella, Brian Petersen, Bagrat Petrosyan, J. Pflüger, Philippe Piot3, Elke Plönjes, Luca Poletto8, D. Proch, D. Pugachov, K. Rehlich, D. Richter, Sabine Riemann, M.C. Ross4, Jörg Rossbach1, M. Sachwitz, E.L. Saldin, Wolfgang Sandner, Holger Schlarb, Boris Schmidt, M. Schmitz, Peter Schmüser1, J. Schneider, Evgeny Schneidmiller, H. J. Schreiber, Siegfried Schreiber, A. Shabunov2, Daniele Sertore, Stefan Setzer7, S. Simrock, E. Sombrowski, L. Staykov, B. Steffen, Frank Stephan, F. Stulle, K. P. Sytchev2, H. Thom, Kai Tiedtke, M. Tischer, Rolf Treusch, D. Trines, I. Tsakov, Ashot Vardanyan6, Rainer Wanzenberg, Thomas Weiland7, H. Weise, M. Wendt, Ingo Will, A. Winter, K. Wittenburg, Mikhail Yurkov, Igor Zagorodnov7, P. Zambolin8, K. Zapfe 
TL;DR: In this paper, the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence.
Abstract: Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse lengths in the femtosecond range [1-4]. This would allow, for example, time-resolved observation of chemical reactions with atomic resolution. Such radiation of extreme intensity, and tunable over a wide range of wavelengths, can be accomplished using high-gain free-electron lasers (FEL) [5-10]. Here we present results of the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence. The experimental data are in full agreement with theory. This is the shortest wavelength achieved with an FEL to date and an important milestone towards a user facility designed for wavelengths down to 6 nm. With a peak brilliance exceeding the state-of-the-art of synchrotron radiation sources [4] by seven orders of magnitude, this device opens a new field of experiments, and it paves the way towards sources with even shorter wavelengths, such as the Linac Coherent Light Source [3] at Stanford, USA, and the European X-ray Free Electron Laser Facility [4] in Hamburg, Germany.

353 citations

Journal ArticleDOI
Christopher J. Milne, Thomas Schietinger, M. Aiba, Arturo Alarcon, J. Alex, Alexander Anghel, Vladimir Arsov, Carl Beard, Paul Beaud, Simona Bettoni, M. Bopp, H. Brands, Manuel Brönnimann, Ingo Brunnenkant, Marco Calvi, A. Citterio, Paolo Craievich, Marta Csatari Divall, Mark Dällenbach, Michael D’Amico, Andreas Dax, Yunpei Deng, Alexander Dietrich, Roberto Dinapoli, Edwin Divall, Sladana Dordevic, Simon Ebner, Christian Erny, Hansrudolf Fitze, Uwe Flechsig, Rolf Follath, F. Frei, Florian Gärtner, Romain Ganter, Terence Garvey, Zheqiao Geng, I. Gorgisyan, C. Gough, A. Hauff, Christoph P. Hauri, Nicole Hiller, Tadej Humar, Stephan Hunziker, Gerhard Ingold, Rasmus Ischebeck, Markus Janousch, Pavle Juranić, M. Jurcevic, Maik Kaiser, Babak Kalantari, Roger Kalt, B. Keil, Christoph Kittel, Gregor Knopp, W. Koprek, Henrik T. Lemke, Thomas Lippuner, Daniel Llorente Sancho, Florian Löhl, C. Lopez-Cuenca, Fabian Märki, F. Marcellini, G. Marinkovic, Isabelle Martiel, Ralf Menzel, Aldo Mozzanica, Karol Nass, Gian Luca Orlandi, Cigdem Ozkan Loch, Ezequiel Panepucci, Martin Paraliev, Bruce D. Patterson, Bill Pedrini, Marco Pedrozzi, Patrick Pollet, Claude Pradervand, Eduard Prat, Peter Radi, Jean-Yves Raguin, S. Redford, Jens Rehanek, Julien Réhault, Sven Reiche, Matthias Ringele, J. Rittmann, Leonid Rivkin, Albert Romann, Marie Ruat, C. Ruder, Leonardo Sala, Lionel Schebacher, T. Schilcher, Volker Schlott, Thomas J. Schmidt, Bernd Schmitt, Xintian Shi, M. Stadler, L. Stingelin, Werner Sturzenegger, Jakub Szlachetko, D. Thattil, D. Treyer, A. Trisorio, Wolfgang Tron, S. Vetter, Carlo Vicario, Didier Voulot, Meitian Wang, Thierry Zamofing, Christof Zellweger, R. Zennaro, Elke Zimoch, Rafael Abela, Luc Patthey, Hans-Heinrich Braun 
TL;DR: The SwissFEL X-ray Free Electron Laser (XFEL) facility as discussed by the authors started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard Xray branch.
Abstract: The SwissFEL X-ray Free Electron Laser (XFEL) facility started construction at the Paul Scherrer Institute (Villigen, Switzerland) in 2013 and will be ready to accept its first users in 2018 on the Aramis hard X-ray branch. In the following sections we will summarize the various aspects of the project, including the design of the soft and hard X-ray branches of the accelerator, the results of SwissFEL performance simulations, details of the photon beamlines and experimental stations, and our first commissioning results.

295 citations

Journal ArticleDOI
Eduard Prat1, Rafael Abela1, M. Aiba1, Arturo Alarcon1, J. Alex1, Yunieski Arbelo1, Christopher Arrell1, Vladimir Arsov1, Camila Bacellar1, Camila Bacellar2, Carl Beard1, Paul Beaud1, Simona Bettoni1, Roger Biffiger1, M. Bopp1, Hans-Heinrich Braun1, Marco Calvi1, Ariana Cassar3, Tine Celcer1, Majed Chergui2, Pavel Chevtsov1, Claudio Cirelli1, A. Citterio1, Paolo Craievich1, Marta Csatari Divall1, Andreas Dax1, Micha Dehler1, Yunpei Deng1, Alexander Dietrich1, Philipp Dijkstal1, Philipp Dijkstal4, Roberto Dinapoli1, Sladana Dordevic1, Simon Ebner1, Daniel Engeler1, Christian Erny1, Vincent Esposito5, Vincent Esposito1, Eugenio Ferrari1, Uwe Flechsig1, Rolf Follath1, F. Frei1, Romain Ganter1, Terence Garvey1, Zheqiao Geng1, Alexandre Gobbo1, C. Gough1, A. Hauff1, Christoph P. Hauri1, Nicole Hiller1, Stephan Hunziker1, Martin Huppert1, Gerhard Ingold1, Rasmus Ischebeck1, Markus Janousch1, Philip J. M. Johnson1, Steven L. Johnson4, Steven L. Johnson1, Pavle Juranić1, M. Jurcevic1, Maik Kaiser1, Roger Kalt1, B. Keil1, Daniela Kiselev1, Christoph Kittel1, Gregor Knopp1, W. Koprek1, Michael Laznovsky1, Henrik T. Lemke1, Daniel Llorente Sancho1, Florian Löhl1, Alexander Malyzhenkov1, Giulia F. Mancini1, Giulia F. Mancini2, Roman Mankowsky1, F. Marcellini1, G. Marinkovic1, Isabelle Martiel1, Fabian Märki1, Christopher J. Milne1, Aldo Mozzanica1, Karol Nass1, Gian Luca Orlandi1, Cigdem Ozkan Loch1, Martin Paraliev1, Bruce D. Patterson1, Luc Patthey1, Bill Pedrini1, Marco Pedrozzi1, Claude Pradervand1, Peter Radi1, Jean-Yves Raguin1, S. Redford1, Jens Rehanek1, Sven Reiche1, Leonid Rivkin1, Albert Romann1, Leonardo Sala1, Mathias Sander1, Thomas Schietinger1, T. Schilcher1, Volker Schlott1, Thomas J. Schmidt1, Mike Seidel1, M. Stadler1, L. Stingelin1, C. Svetina1, D. Treyer1, A. Trisorio1, Carlo Vicario1, Didier Voulot1, A. Wrulich1, Serhane Zerdane1, Elke Zimoch1 
TL;DR: In this article, the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland, were presented.
Abstract: We present the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland. SwissFEL is a very stable, compact and cost-effective X-ray FEL facility driven by a low-energy and ultra-low-emittance electron beam travelling through short-period undulators. It delivers stable hard X-ray FEL radiation at 1-A wavelength with pulse energies of more than 500 μJ, pulse durations of ~30 fs (root mean square) and spectral bandwidth below the per-mil level. Using special configurations, we have produced pulses shorter than 1 fs and, in a different set-up, broadband radiation with an unprecedented bandwidth of ~2%. The extremely small emittance demonstrated at SwissFEL paves the way for even more compact and affordable hard X-ray FELs, potentially boosting the number of facilities worldwide and thereby expanding the population of the scientific community that has access to X-ray FEL radiation. The first lasing results at SwissFEL, an X-ray free-electron laser, are presented, highlighting the facility’s unique capabilities. A general comparison to other major facilities is also provided.

118 citations

Journal ArticleDOI
TL;DR: This Letter distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH, and succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes.
Abstract: High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

Journal ArticleDOI
Wolfgang Ackermann1, G. Asova, Valeri Ayvazyan2, A. Azima2  +154 moreInstitutions (16)
TL;DR: In this paper, the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured.
Abstract: We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

1,390 citations

Journal ArticleDOI
TL;DR: In this paper, the FLASH soft X-ray free-electron laser was used to reconstruct a coherent diffraction pattern from a nano-structured nonperiodic object, before destroying it at 60,000 K.
Abstract: Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

957 citations

Journal ArticleDOI
TL;DR: In this paper, the FERMI free-electron laser operating in the high-gain harmonic generation regime was demonstrated, allowing high stability, transverse and longitudinal coherence and polarization control.
Abstract: Researchers demonstrate the FERMI free-electron laser operating in the high-gain harmonic generation regime, allowing high stability, transverse and longitudinal coherence and polarization control.

831 citations