scispace - formally typeset
Search or ask a question
Author

Florin Stoican

Other affiliations: University of Grenoble, CentraleSupélec, Supélec  ...read more
Bio: Florin Stoican is an academic researcher from Politehnica University of Bucharest. The author has contributed to research in topics: Fault detection and isolation & Fault tolerance. The author has an hindex of 17, co-authored 97 publications receiving 1011 citations. Previous affiliations of Florin Stoican include University of Grenoble & CentraleSupélec.


Papers
More filters
Journal ArticleDOI
TL;DR: This article revisits the construction of ε-approximations of minimal robust positive invariant sets for linear systems upon contractive set-iterations and deals with fault tolerant multisensor control schemes for systems with linear dynamics.
Abstract: This article deals with fault tolerant multisensor control schemes for systems with linear dynamics. Positive invariance is a common analysis and control design tool for systems affected by bounded constraints and disturbances. This article revisits the construction of e-approximations of minimal robust positive invariant sets for linear systems upon contractive set-iterations. The cases of switching between different sets of disturbances and the inclusion of a predefined region of the state space are treated in detail. All these results are used in multisensor control schemes which have to deal with specific problems originated by the switching between different estimators and by the presence of faults in some of the sensors. The construction of positive invariant sets for different operating regimes provides, in this context, effective fault detection information. Within the same framework, global stability of the switching strategies can be assured if the invariant sets topology allows the exclusive se...

147 citations

Journal ArticleDOI
03 Feb 2020-Sensors
TL;DR: A hierarchical structure based on the collaboration between unmanned aerial vehicles (UAVs) and federated wireless sensor networks (WSNs) for crop monitoring in precision agriculture proved to be a robust and efficient solution for data collection, control, analysis, and decisions in such specialized applications.
Abstract: The growing need for food worldwide requires the development of a high-performance, high-productivity, and sustainable agriculture, which implies the introduction of new technologies into monitoring activities related to control and decision-making. In this regard, this paper presents a hierarchical structure based on the collaboration between unmanned aerial vehicles (UAVs) and federated wireless sensor networks (WSNs) for crop monitoring in precision agriculture. The integration of UAVs with intelligent, ground WSNs, and IoT proved to be a robust and efficient solution for data collection, control, analysis, and decisions in such specialized applications. Key advantages lay in online data collection and relaying to a central monitoring point, while effectively managing network load and latency through optimized UAV trajectories and in situ data processing. Two important aspects of the collaboration were considered: designing the UAV trajectories for efficient data collection and implementing effective data processing algorithms (consensus and symbolic aggregate approximation) at the network level for the transmission of the relevant data. The experiments were carried out at a Romanian research institute where different crops and methods are developed. The results demonstrate that the collaborative UAV-WSN-IoT approach increases the performances in both precision agriculture and ecological agriculture.

137 citations

Journal ArticleDOI
28 Oct 2019-Sensors
TL;DR: A systematic approach is carried out in order to structure a unitary from conceptual design towards key implementation aspects of UAV–WSN systems, and a research agenda is outlined to advance the field towards tangible economic and social impact.
Abstract: Integrated systems based on wireless sensor networks (WSNs) and unmanned aerial vehicles (UAVs) with electric propulsion are emerging as state-of-the-art solutions for large scale monitoring. Main advances stemming both from complex system architectures as well as powerful embedded computing and communication platforms, advanced sensing and networking protocols have been leveraged to prove the viability of this concept. The design of suitable algorithms for data processing, communication and control across previously disparate domains has thus currently become an intensive area of interdisciplinary research. The paper was focused on the collaborative aspects of UAV-WSN systems and the reference papers were analyzed from this point of view, on each functional module. The paper offers a timely review of recent advances in this area of critical interest with focus on a comparative perspective across multiple recent theoretical and applied contributions. A systematic approach is carried out in order to structure a unitary from conceptual design towards key implementation aspects. Focus areas are identified and discussed such as distributed data processing algorithms, hierarchical multi-protocol networking aspects and high level WSN-constrained UAV-control. Application references are highlighted in various domains such as environmental, agriculture, emergency situations and homeland security. Finally, a research agenda is outlined to advance the field towards tangible economic and social impact.

82 citations

Journal ArticleDOI
01 Nov 2015-Energy
TL;DR: In this paper, an extension of a Model Predictive Control (MPC) approach for microgrid energy management is presented, which takes into account electricity costs, power consumption, generation profiles, power and energy constraints as well as uncertainty due to variations in the environment.

62 citations

Journal ArticleDOI
30 Nov 2018-Sensors
TL;DR: A hybrid UAV-WSN network which is self-configured to improve the acquisition of environmental data across large areas and shows improvements in both network and data collection efficiency metrics by implementing the proposed algorithms.
Abstract: Large-scale monitoring systems have seen rapid development in recent years. Wireless sensor networks (WSN), composed of thousands of sensing, computing and communication nodes, form the backbone of such systems. Integration with unmanned aerial vehicles (UAVs) leads to increased monitoring area and to better overall performance. This paper presents a hybrid UAV-WSN network which is self-configured to improve the acquisition of environmental data across large areas. A prime objective and novelty of the heterogeneous multi-agent scheme proposed here is the optimal generation of reference trajectories, parameterized after inter- and intra-line distances. The main contribution is the trajectory design, optimized to avoid interdicted regions, to pass near predefined way-points, with guaranteed communication time, and to minimize total path length. Mixed-integer description is employed into the associated constrained optimization problem. The second novelty is the sensor localization and clustering method for optimal ground coverage taking into account the communication information between UAV and a subset of ground sensors (i.e., the cluster heads). Results show improvements in both network and data collection efficiency metrics by implementing the proposed algorithms. These are initially evaluated by means of simulation and then validated on a realistic WSN-UAV test-bed, thus bringing significant practical value.

61 citations


Cited by
More filters
Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations

Book ChapterDOI
01 Jan 2003
TL;DR: “Multivalued Analysis” is the theory of set-valued maps (called multifonctions) and has important applications in many different areas and there is no doubt that a modern treatise on “Nonlinear functional analysis” can not afford the luxury of ignoring multivalued analysis.
Abstract: “Multivalued Analysis” is the theory of set-valued maps (called multifonctions) and has important applications in many different areas. Multivalued analysis is a remarkable mixture of many different parts of mathematics such as point-set topology, measure theory and nonlinear functional analysis. It is also closely related to “Nonsmooth Analysis” (Chapter 5) and in fact one of the main motivations behind the development of the theory, was in order to provide necessary analytical tools for the study of problems in nonsmooth analysis. It is not a coincidence that the development of the two fields coincide chronologically and follow parallel paths. Today multivalued analysis is a mature mathematical field with its own methods, techniques and applications that range from social and economic sciences to biological sciences and engineering. There is no doubt that a modern treatise on “Nonlinear Functional Analysis” can not afford the luxury of ignoring multivalued analysis. The omission of the theory of multifunctions will drastically limit the possible applications.

996 citations

Journal ArticleDOI
TL;DR: A comparative and critical analysis on decision making strategies and their solution methods for microgrid energy management systems are presented and various uncertainty quantification methods are summarized.

617 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a test benchmark model for the evaluation of fault detection and accommodation schemes for a wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator, and the converter system.
Abstract: This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator, and the converter system. Since it is a system-level model, converter and pitch system models are simplified because these are controlled by internal controllers working at higher frequencies than the system model. The model represents a three-bladed pitch-controlled variable-speed wind turbine with a nominal power of 4.8 MW. The fault detection and isolation (FDI) problem was addressed by several teams, and five of the solutions are compared in the second part of this paper. This comparison relies on additional test data in which the faults occur in different operating conditions than in the test data used for the FDI design.

370 citations