scispace - formally typeset
Search or ask a question
Author

Florinda Ferreri

Bio: Florinda Ferreri is an academic researcher from University of Padua. The author has contributed to research in topics: Transcranial magnetic stimulation & Electroencephalography. The author has an hindex of 36, co-authored 79 publications receiving 5968 citations. Previous affiliations of Florinda Ferreri include University of Messina & University of Eastern Finland.


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” and include some recent extensions and developments.

1,850 citations

Journal ArticleDOI
TL;DR: A bimodal balance–recovery model is suggested that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion, which could enable NIBS to be tailored to the needs of individual patients.
Abstract: Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.

570 citations

Journal ArticleDOI
TL;DR: This study represents a breakthrough in robotic hand use in amputees and assesses a novel peripheral intraneural multielectrode for multi-movement prosthesis control and for sensory feed-back, while assessing cortical reorganization following the re-acquired stream of data.

383 citations

Journal ArticleDOI
TL;DR: Functional data on large populations support the 'transitional hypothesis' of a shadow zone across normality, pre-clinical stage of dementia (MCI), and AD.

268 citations

Journal ArticleDOI
TL;DR: This was the first investigation that illustrated the power spectrum profiles at the level of cortical (macroregions) EEG sources in mild AD patients having different severity of the disease with respect to VaD and normal subjects.

261 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The present updated guidelines review issues of risk and safety of conventional TMS protocols, address the undesired effects and risks of emerging TMS interventions, the applications of TMS in patients with implanted electrodes in the central nervous system, and safety aspects of T MS in neuroimaging environments.

4,447 citations

Journal ArticleDOI
TL;DR: Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep, through specific patterns of neuromodulatory activity and electric field potential oscillations.
Abstract: Sleep improves the consolidation of both declarative and non-declarative memories. Diekelmann and Born discuss the potential mechanisms through which slow wave sleep and rapid eye movement sleep support system and synaptic consolidation. Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep. Consolidation during sleep promotes both quantitative and qualitative changes of memory representations. Through specific patterns of neuromodulatory activity and electric field potential oscillations, slow-wave sleep (SWS) and rapid eye movement (REM) sleep support system consolidation and synaptic consolidation, respectively. During SWS, slow oscillations, spindles and ripples — at minimum cholinergic activity — coordinate the re-activation and redistribution of hippocampus-dependent memories to neocortical sites, whereas during REM sleep, local increases in plasticity-related immediate-early gene activity — at high cholinergic and theta activity — might favour the subsequent synaptic consolidation of memories in the cortex.

2,983 citations

Journal ArticleDOI
TL;DR: This review aims to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings.
Abstract: Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

1,964 citations