scispace - formally typeset
Search or ask a question
Author

Floris F. Berendsen

Bio: Floris F. Berendsen is an academic researcher from Leiden University Medical Center. The author has contributed to research in topics: Image registration & Segmentation. The author has an hindex of 10, co-authored 23 publications receiving 1319 citations. Previous affiliations of Floris F. Berendsen include Leiden University & Utrecht University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Deep Learning Image Registration (DLIR) framework is proposed for unsupervised affine and deformable image registration, where CNNs are trained for image registration by exploiting image similarity analogous to conventional intensity-based image registration.

488 citations

Book ChapterDOI
14 Sep 2017
TL;DR: The results demonstrate that registration with DIRNet is as accurate as a conventional deformable image registration method with short execution times.
Abstract: In this work we propose a deep learning network for deformable image registration (DIRNet). The DIRNet consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler. The ConvNet analyzes a pair of fixed and moving images and outputs parameters for the spatial transformer, which generates the displacement vector field that enables the resampler to warp the moving image to the fixed image. The DIRNet is trained end-to-end by unsupervised optimization of a similarity metric between input image pairs. A trained DIRNet can be applied to perform registration on unseen image pairs in one pass, thus non-iteratively. Evaluation was performed with registration of images of handwritten digits (MNIST) and cardiac cine MR scans (Sunnybrook Cardiac Data). The results demonstrate that registration with DIRNet is as accurate as a conventional deformable image registration method with short execution times.

372 citations

Book ChapterDOI
10 Sep 2017
TL;DR: The proposed RegNet is trained using a large set of artificially generated DVFs, does not explicitly define a dissimilarity metric, and integrates image content at multiple scales to equip the network with contextual information, thereby greatly simplifying the training problem.
Abstract: In this paper we propose a method to solve nonrigid image registration through a learning approach, instead of via iterative optimization of a predefined dissimilarity metric. We design a Convolutional Neural Network (CNN) architecture that, in contrast to all other work, directly estimates the displacement vector field (DVF) from a pair of input images. The proposed RegNet is trained using a large set of artificially generated DVFs, does not explicitly define a dissimilarity metric, and integrates image content at multiple scales to equip the network with contextual information. At testing time nonrigid registration is performed in a single shot, in contrast to current iterative methods. We tested RegNet on 3D chest CT follow-up data. The results show that the accuracy of RegNet is on par with a conventional B-spline registration, for anatomy within the capture range. Training RegNet with artificially generated DVFs is therefore a promising approach for obtaining good results on real clinical data, thereby greatly simplifying the training problem. Deformable image registration can therefore be successfully casted as a learning problem.

324 citations

Book ChapterDOI
TL;DR: DIRNet as discussed by the authors consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler, which analyzes a pair of fixed and moving images and outputs parameters for the spatial transformer.
Abstract: In this work we propose a deep learning network for deformable image registration (DIRNet). The DIRNet consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler. The ConvNet analyzes a pair of fixed and moving images and outputs parameters for the spatial transformer, which generates the displacement vector field that enables the resampler to warp the moving image to the fixed image. The DIRNet is trained end-to-end by unsupervised optimization of a similarity metric between input image pairs. A trained DIRNet can be applied to perform registration on unseen image pairs in one pass, thus non-iteratively. Evaluation was performed with registration of images of handwritten digits (MNIST) and cardiac cine MR scans (Sunnybrook Cardiac Data). The results demonstrate that registration with DIRNet is as accurate as a conventional deformable image registration method with substantially shorter execution times.

249 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: SimpleElastix is presented, an extension of SimpleITK designed to bring the Elastix medical image registration library to a wider audience and shows how to register MR images of brains and natural pictures of faces using minimal amount of code.
Abstract: In this paper we present SimpleElastix, an extension of SimpleITK designed to bring the Elastix medical image registration library to a wider audience. Elastix is a modular collection of robust C++ image registration algorithms that is widely used in the literature. However, its command-line interface introduces overhead during prototyping, experimental setup, and tuning of registration algorithms. By integrating Elastix with SimpleITK, Elastix can be used as a native library in Python, Java, R, Octave, Ruby, Lua, Tcl and C# on Linux, Mac and Windows. This allows Elastix to intregrate naturally with many development environments so the user can focus more on the registration problem and less on the underlying C++ implementation. As means of demonstration, we show how to register MR images of brains and natural pictures of faces using minimal amount of code. SimpleElastix is open source, licensed under the permissive Apache License Version 2.0 and available at https://github.com/kaspermarstal/SimpleElastix.

226 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field is provided, and the challenges and suggested solutions to help researchers understand the existing research gaps.
Abstract: In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.

1,084 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Journal ArticleDOI
TL;DR: This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network and goes on to cover Convolutional Neural Network, Recurrent Neural Network (RNN), and Deep Reinforcement Learning (DRL).
Abstract: In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.

922 citations

Journal ArticleDOI
TL;DR: VoxelMorph promises to speed up medical image analysis and processing pipelines while facilitating novel directions in learning-based registration and its applications and demonstrates that the unsupervised model’s accuracy is comparable to the state-of-the-art methods while operating orders of magnitude faster.
Abstract: We present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich deformation models. In contrast to this approach, and building on recent learning-based methods, we formulate registration as a function that maps an input image pair to a deformation field that aligns these images. We parameterize the function via a convolutional neural network (CNN), and optimize the parameters of the neural network on a set of images. Given a new pair of scans, VoxelMorph rapidly computes a deformation field by directly evaluating the function. In this work, we explore two different training strategies. In the first (unsupervised) setting, we train the model to maximize standard image matching objective functions that are based on the image intensities. In the second setting, we leverage auxiliary segmentations available in the training data. We demonstrate that the unsupervised model's accuracy is comparable to state-of-the-art methods, while operating orders of magnitude faster. We also show that VoxelMorph trained with auxiliary data improves registration accuracy at test time, and evaluate the effect of training set size on registration. Our method promises to speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is freely available at this http URL.

860 citations

Journal ArticleDOI
TL;DR: Multi-atlas segmentation (MAS) is becoming one of the most widely used and successful image segmentation techniques in biomedical applications as mentioned in this paper, and it has been widely used in medical image classification.

587 citations