scispace - formally typeset
Search or ask a question
Author

Fook-Thean Lee

Other affiliations: La Trobe University, Indiana University, Newcastle University  ...read more
Bio: Fook-Thean Lee is an academic researcher from Ludwig Institute for Cancer Research. The author has contributed to research in topics: Monoclonal antibody & Biodistribution. The author has an hindex of 34, co-authored 84 publications receiving 3511 citations. Previous affiliations of Fook-Thean Lee include La Trobe University & Indiana University.


Papers
More filters
Journal Article
TL;DR: Repeat infusions of the humanized anti-FAP antibody sibrotuzumab can be administered safely to patients with advanced FAP-positive cancer, and a maximum tolerated dose was not reached.
Abstract: Purpose: The purpose of this research was to determine the safety, immunogenicity, pharmacokinetics, biodistribution, and tumor uptake of repeat infusions of a complementarity-determining region grafted humanized antibody (sibrotuzumab) directed against human fibroblast activation protein (FAP). Experimental Design: A Phase I open-label dose escalation study was conducted in patients with cancers epidemiologically known to be FAP positive. Patients were entered into one of four dosage tiers of 5, 10, 25, or 50 mg/m 2 sibrotuzumab, administered weekly for 12 weeks, with trace labeling with 8–10 mCi of 131 I in weeks 1, 5, and 9. Results: A total of 26 patients were entered into the trial (15 males and 11 females; mean age, 59.9 years; age range, 41–81 years). Twenty patients had colorectal carcinoma, and 6 patients had non-small cell lung cancer. A total of 218 infusions of sibrotuzumab were administered during the first 12 weeks of the study, with 24 patients being evaluable. One patient received an additional 96 infusions on continued-use phase for a total of 108 infusions over a 2-year period, and 1 patient received an additional 6 infusions on continued use. There were no objective tumor responses. Only one episode of dose-limiting toxicity was observed. Therefore, a maximum tolerated dose was not reached. Treatment-related adverse events were observed in 6 patients during the infusional monitoring period. Four of the 6 patients, 3 of whom had associated positive serum human antihuman antibody, were removed from the study because of clinical immune responses. Gamma camera images of [ 131 I]sibrotuzumab demonstrated no normal organ uptake of sibrotuzumab, with tumor uptake evident within 24–48 h after infusion. Analysis of pharmacokinetics demonstrated a similar mean terminal t 1/2 of 1.4–2.6 days at the 5, 10, and 25 mg/m 2 dose levels, and with a longer mean t 1/2 of 4.9 days at the 50 mg/m 2 dose level. Conclusion: Repeat infusions of the humanized anti-FAP antibody sibrotuzumab can be administered safely to patients with advanced FAP-positive cancer.

382 citations

Journal ArticleDOI
TL;DR: Analysis of staining of lymphoblastoid cell lines, peripheral blood lymphocytes and tonsil sections demonstrated that the monovalent scFv fragment has the same cellular specificity as the parent hybridoma antibody.

236 citations

Journal ArticleDOI
TL;DR: The present clinical study was designed to examine the in vivo specificity of a chimeric form of mAb 806 (ch806) in a tumor targeting/biodistribution/pharmacokinetic analysis in patients with diverse tumor types, and showed excellent targeting of tumor sites in all patients, no evidence of normal tissue uptake, and no significant toxicity.
Abstract: An array of cell-surface antigens expressed by human cancers have been identified as targets for antibody-based therapies. The great majority of these antibodies do not have specificity for cancer but recognize antigens expressed on a range of normal cell types (differentiation antigens). Over the past two decades, our group has analyzed thousands of mouse monoclonal antibodies for cancer specificity and identified a battery of antibodies with limited representation on normal human cells. The most tumor-specific of these antibodies is 806, an antibody that detects a unique epitope on the epidermal growth factor receptor (EGFR) that is exposed only on overexpressed, mutant, or ligand-activated forms of the receptor in cancer. In vitro immunohistochemical specificity analysis shows little or no detectable 806 reactivity with normal tissues, even those with high levels of wild-type (wt)EGFR expression. Preclinical studies have demonstrated that 806 specifically targets a subset of EGFR expressed on tumor cells, and has significant anti-tumor effects on human tumor xenografts, primarily through abrogation of signaling pathways. The present clinical study was designed to examine the in vivo specificity of a chimeric form of mAb 806 (ch806) in a tumor targeting/biodistribution/pharmacokinetic analysis in patients with diverse tumor types. ch806 showed excellent targeting of tumor sites in all patients, no evidence of normal tissue uptake, and no significant toxicity. These in vitro and in vivo characteristics of ch806 distinguish it from all other antibodies targeting EGFR.

229 citations

Journal ArticleDOI
TL;DR: Key issues impacting on the clinical success of ADCs in cancer therapy include better patient selection for treatment and the identification of mechanisms of therapy resistance.
Abstract: Antibody-drug conjugates (ADCs) take advantage of the specificity of a monoclonal antibody to deliver a linked cytotoxic agent directly into a tumour cell. The development of these compounds provides exciting opportunities for improvements in patient care. Here, we review the key issues impacting on the clinical success of ADCs in cancer therapy. Like many other developing therapeutic classes, there remain challenges in the design and optimisation of these compounds. As the clinical applications for ADCs continue to expand, key strategies to improve patient outcomes include better patient selection for treatment and the identification of mechanisms of therapy resistance.

138 citations

Journal ArticleDOI
TL;DR: HuA33 shows selective and rapid localization to colorectal carcinoma in vivo and penetrates to the center of large necrotic tumors, and colon elimination half-life of huA 33 is equivalent to basal colonocyte turnover.
Abstract: Purpose: To determine the in vivo characteristics of huA33, a CDR-grafted humanized antibody against the A33 antigen, we have conducted an open-label, dose escalation, biopsy-based phase I trial of huA33 in patients with colorectal carcinoma. Experimental Design: Patients with colorectal carcinoma were infused with [ 131 I]huA33 (400 MBq: 10 mCi) and [ 125 I]huA33 (40 MBq: 1 mCi) 1 week before surgery. There were four huA33 dose levels (0.25, 1.0, 5.0, and 10 mg/m 2 ). Adverse events, pharmacokinetics, biodistribution, tumor biopsies, and immune responses to huA33 were evaluated. Results: There were 12 patients entered into the trial (6 males and 6 females; age range, 39-66 years). No dose-limiting toxicity was observed. The biodistribution of huA33 showed excellent uptake of [ 131 I]huA33 in metastatic colorectal carcinoma. Pharmacokinetic analysis showed no significant difference in terminal half-life ( T 1/2β) between dose levels (mean ± SD, 86.92 ± 22.12 hours). Modeling of colon uptake of huA33 showed a T 1/2 of elimination of 32.4 ± 8.1 hours. Quantitative tumor uptake ranged from 2.1 × 10 −3 to 11.1 × 10 −3 %ID/g, and tumor/normal tissue and tumor/serum ratios reached as high as 16.3:1 and 4.5:1, respectively. Biosensor analysis detected low-level human anti-human antibody responses in four patients following huA33 infusion. Conclusions: huA33 shows selective and rapid localization to colorectal carcinoma in vivo and penetrates to the center of large necrotic tumors, and colon elimination half-life of huA33 is equivalent to basal colonocyte turnover. The excellent targeting characteristics of this humanized antibody indicate potential for the targeted therapy of metastatic colorectal cancer in future trials.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The American Cancer Society estimated the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from National Center for Health Statistics as discussed by the authors.
Abstract: Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,399,790 new cancer cases and 564,830 deaths from cancer are expected in the United States in 2006. When deaths are aggregated by age, cancer has surpassed heart disease as the leading cause of death for those younger than age 85 since 1999. Delay-adjusted cancer incidence rates stabilized in men from 1995 through 2002, but continued to increase by 0.3% per year from 1987 through 2002 in women. Between 2002 and 2003, the actual number of recorded cancer deaths decreased by 778 in men, but increased by 409 in women, resulting in a net decrease of 369, the first decrease in the total number of cancer deaths since national mortality record keeping was instituted in 1930. The death rate from all cancers combined has decreased by 1.5% per year since 1993 among men and by 0.8% per year since 1992 among women. The mortality rate has also continued to decrease for the three most common cancer sites in men (lung and bronchus, colon and rectum, and prostate) and for breast and colon and rectum cancers in women. Lung cancer mortality among women continues to increase slightly. In analyses by race and ethnicity, African American men and women have 40% and 18% higher death rates from all cancers combined than White men and women, respectively. Cancer incidence and death rates are lower in other racial and ethnic groups than in Whites and African Americans for all sites combined and for the four major cancer sites. However, these groups generally have higher rates for stomach, liver, and cervical cancers than Whites. Furthermore, minority populations are more likely to be diagnosed with advanced stage disease than are Whites. Progress in reducing the burden of suffering and death from cancer can be accelerated by applying existing cancer control knowledge across all segments of the population.

5,087 citations

Journal ArticleDOI
18 Jul 1986-Science
TL;DR: A novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to the understanding of cell-to-cell communication.
Abstract: Protein kinase C, an enzyme that is activated by the receptor-mediated hydrolysis of inositol phospholipids, relays information in the form of a variety of extracellular signals across the membrane to regulate many Ca2+-dependent processes. At an early phase of cellular responses, the enzyme appears to have a dual effect, providing positive forward as well as negative feedback controls over various steps of its own and other signaling pathways, such as the receptors that are coupled to inositol phospholipid hydrolysis and those of some growth factors. In biological systems, a positive signal is frequently followed by immediate negative feedback regulation. Such a novel role of this protein kinase system seems to give a logical basis for clarifying the biochemical mechanism of signal transduction, and to add a new dimension essential to our understanding of cell-to-cell communication.

5,006 citations

Journal ArticleDOI
TL;DR: Fibroblasts are a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Abstract: Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.

4,232 citations

Journal ArticleDOI
TL;DR: The recent confluence of advances in stem cell biology, cell signaling, genome and computational science and genetic model systems have revolutionized understanding of the mechanisms underlying the genetics, biology and clinical behavior of glioblastoma.
Abstract: Malignant astrocytic gliomas such as glioblastoma are the most common and lethal intracranial tumors. These cancers exhibit a relentless malignant progression characterized by widespread invasion throughout the brain, resistance to traditional and newer targeted therapeutic approaches, destruction of normal brain tissue, and certain death. The recent confluence of advances in stem cell biology, cell signaling, genome and computational science and genetic model systems have revolutionized our understanding of the mechanisms underlying the genetics, biology and clinical behavior of glioblastoma. This progress is fueling new opportunities for understanding the fundamental basis for development of this devastating disease and also novel therapies that, for the first time, portend meaningful clinical responses.

2,203 citations

Journal ArticleDOI
TL;DR: This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.
Abstract: The use of monoclonal antibodies (mAbs) for cancer therapy has achieved considerable success in recent years. Antibody-drug conjugates are powerful new treatment options for lymphomas and solid tumours, and immunomodulatory antibodies have also recently achieved remarkable clinical success. The development of therapeutic antibodies requires a deep understanding of cancer serology, protein-engineering techniques, mechanisms of action and resistance, and the interplay between the immune system and cancer cells. This Review outlines the fundamental strategies that are required to develop antibody therapies for cancer patients through iterative approaches to target and antibody selection, extending from preclinical studies to human trials.

1,788 citations