scispace - formally typeset
Search or ask a question
Author

Fortunato Battaglia

Bio: Fortunato Battaglia is an academic researcher from Seton Hall University. The author has contributed to research in topics: Transcranial magnetic stimulation & Motor cortex. The author has an hindex of 34, co-authored 88 publications receiving 10294 citations. Previous affiliations of Fortunato Battaglia include Columbia University & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
08 Aug 2003-Science
TL;DR: It is shown that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants, suggesting that the behavioral effects of chronic antidepressants may be mediated by the stimulation of neuroGenesis in the hippocampus.
Abstract: Various chronic antidepressant treatments increase adult hippocampal neurogenesis, but the functional importance of this phenomenon remains unclear. Here, using genetic and radiological methods, we show that disrupting antidepressant-induced neurogenesis blocks behavioral responses to antidepressants. Serotonin 1A receptor null mice were insensitive to the neurogenic and behavioral effects of fluoxetine, a serotonin selective reuptake inhibitor. X-irradiation of a restricted region of mouse brain containing the hippocampus prevented the neurogenic and behavioral effects of two classes of antidepressants. These findings suggest that the behavioral effects of chronic antidepressants may be mediated by the stimulation of neurogenesis in the hippocampus.

4,116 citations

Journal ArticleDOI
TL;DR: The findings show that adult-born neurons make a distinct contribution to some but not all hippocampal functions and show that new hippocampal neurons can be preferentially recruited over mature granule cells in vitro and may provide a framework for how this small cell population can influence behavior.
Abstract: Although hippocampal neurogenesis has been described in many adult mammals, the functional impact of this process on physiology and behavior remains unclear. In the present study, we used two independent methods to ablate hippocampal neurogenesis and found that each procedure caused a limited behavioral deficit and a loss of synaptic plasticity within the dentate gyrus. Specifically, focal X irradiation of the hippocampus or genetic ablation of glial fibrillary acidic protein-positive neural progenitor cells impaired contextual fear conditioning but not cued conditioning. Hippocampal-dependent spatial learning tasks such as the Morris water maze and Y maze were unaffected. These findings show that adult-born neurons make a distinct contribution to some but not all hippocampal functions. In a parallel set of experiments, we show that long-term potentiation elicited in the dentate gyrus in the absence of GABA blockers requires the presence of new neurons, as it is eliminated by each of our ablation procedures. These data show that new hippocampal neurons can be preferentially recruited over mature granule cells in vitro and may provide a framework for how this small cell population can influence behavior.

1,017 citations

Journal ArticleDOI
TL;DR: The results suggest that chronic fluoxetine accelerates the maturation of immature neurons and may be necessary for its anxiolytic/antidepressant activity and contribute to its delayed onset of therapeutic efficacy.
Abstract: Chronic treatments with selective serotonin reuptake inhibitors (SSRIs) have been shown to increase hippocampal neurogenesis. However, it is not known whether SSRIs impact the maturation and functional integration of newborn neurons. Here we examined the effects of subchronic and chronic fluoxetine on the structural and physiological properties of young granule cells. Our results show that doublecortin-positive immature neurons displayed increased dendritic arborization after chronic fluoxetine treatment. In addition, chronic but not subchronic fluoxetine elicited a decrease in the number of newborn neurons expressing immature markers and a corresponding increase in those expressing mature markers. These results suggest that chronic fluoxetine accelerates the maturation of immature neurons. We also investigated the effects of fluoxetine on a form of neurogenesis-dependent long-term potentiation (LTP) in the dentate gyrus. This form of LTP was enhanced by chronic fluoxetine, and ablation of neurogenesis with x-irradiation completely blocked the effects of chronic fluoxetine on LTP. Finally, we demonstrated that the behavioral effect of fluoxetine in the novelty-suppressed feeding test requires chronic administration and is blocked by x-irradiation. These results show that the effects of fluoxetine on LTP and behavior both require neurogenesis and follow a similar delayed time course. The effects of chronic fluoxetine on the maturation and functional properties of young neurons may therefore be necessary for its anxiolytic/antidepressant activity and contribute to its delayed onset of therapeutic efficacy.

523 citations

Journal ArticleDOI
TL;DR: Very early symptomatic Mecp2308/Y mice had increased basal synaptic transmission and deficits in the induction of long-term depression, suggesting that functional and ultrastructural synaptic dysfunction is an early event in the pathogenesis of RTT.
Abstract: Loss-of-function mutations or abnormal expression of the X-linked gene encoding methyl CpG binding protein 2 (MeCP2) cause a spectrum of postnatal neurodevelopmental disorders including Rett syndrome (RTT), nonsyndromic mental retardation, learning disability, and autism. Mice expressing a truncated allele of Mecp2 (Mecp2(308)) reproduce the motor and social behavior abnormalities of RTT; however, it is not known whether learning deficits are present in these animals. We investigated learning and memory, neuronal morphology, and synaptic function in Mecp2(308) mice. Hippocampus-dependent spatial memory, contextual fear memory, and social memory were significantly impaired in Mecp2(308) mutant males (Mecp2(308/Y)). The morphology of dendritic arborizations, the biochemical composition of synaptosomes and postsynaptic densities, and brain-derived neurotrophic factor expression were not altered in these mice. However, reduced postsynaptic density cross-sectional length was identified in asymmetric synapses of area CA1 of the hippocampus. In the hippocampus of symptomatic Mecp2(308/Y) mice, Schaffer-collateral synapses exhibited enhanced basal synaptic transmission and decreased paired-pulse facilitation, suggesting that neurotransmitter release was enhanced. Schaffer-collateral long-term potentiation (LTP) was impaired. LTP was also reduced in the motor and sensory regions of the neocortex. Finally, very early symptomatic Mecp2(308/Y) mice had increased basal synaptic transmission and deficits in the induction of long-term depression. These data demonstrate a requirement for MeCP2 in learning and memory and suggest that functional and ultrastructural synaptic dysfunction is an early event in the pathogenesis of RTT.

511 citations

Journal ArticleDOI
TL;DR: It is demonstrated that amyloid β-peptide treatment of cultured hippocampal neurons leads to the inactivation of protein kinase A (PKA) and persistence of its regulatory subunit PKAIIα, suggesting that Αβ acts directly on the pathways involved in the formation of late LTP and agents that enhance the cAMP/PKA/CREB-signaling pathway have potential for the treatment of AD.
Abstract: Changes in hippocampal function seem critical for cognitive impairment in Alzheimer's disease (AD). Although there is eventual loss of synapses in both AD and animal models of AD, deficits in spatial memory and inhibition of long-term potentiation (LTP) precede morphological alterations in the models, suggesting earlier biochemical changes in the disease. In the studies reported here we demonstrate that amyloid β-peptide (Aβ) treatment of cultured hippocampal neurons leads to the inactivation of protein kinase A (PKA) and persistence of its regulatory subunit PKAIIα. Consistent with this, CREB phosphorylation in response to glutamate is decreased, and the decrease is reversed by rolipram, a phosphodiesterase inhibitor that raises cAMP and leads to the dissociation of the PKA catalytic and regulatory subunits. It is likely that a similar mechanism underlies Αβ inhibition of LTP, because rolipram and forskolin, agents that enhance the cAMP-signaling pathway, can reverse this inhibition. This reversal is blocked by H89, an inhibitor of PKA. These observations suggest that Αβ acts directly on the pathways involved in the formation of late LTP and agents that enhance the cAMP/PKA/CREB-signaling pathway have potential for the treatment of AD.

507 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
08 Sep 1978-Science

5,182 citations

Journal ArticleDOI
TL;DR: The present updated guidelines review issues of risk and safety of conventional TMS protocols, address the undesired effects and risks of emerging TMS interventions, the applications of TMS in patients with implanted electrodes in the central nervous system, and safety aspects of T MS in neuroimaging environments.

4,447 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: In response to stress, the brain activates several neuropeptide-secreting systems, which eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators as mentioned in this paper.
Abstract: In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.

3,727 citations