scispace - formally typeset
Search or ask a question
Author

Francesca Ceroni

Other affiliations: University of Sannio
Bio: Francesca Ceroni is an academic researcher from University of Naples Federico II. The author has contributed to research in topics: Masonry & Fibre-reinforced plastic. The author has an hindex of 27, co-authored 108 publications receiving 2563 citations. Previous affiliations of Francesca Ceroni include University of Sannio.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the results of an experimental program on Reinforced Concrete (RC) beams externally strengthened with carbon Fibre Reinforced Plastic (FRP) laminates and Near Surface Mounted (NSM) bars under monotonic and cyclic loads, the latter ones characterized by a low number of cycles in the elastic and post-elastic range.

233 citations

Journal ArticleDOI
TL;DR: In this paper, the results of an experimental program to investigate the bonding behavior of two different types of fiber-reinforced polymer (FRP) systems for strengthening RC members: externally bonded carbon (EBR) plates and bars or strips externally applied with the near surface mounted (NSM) technique.
Abstract: This paper reports the results of an experimental program to investigate the bonding behavior of two different types of fiber-reinforced polymer (FRP) systems for strengthening RC members: externally bonded carbon (EBR) plates and bars or strips externally applied with the near-surface-mounted (NSM) technique. The overall experimental program consisted of 18 bond tests on concrete specimens strengthened with EBR carbon plates and 24 bond tests on concrete specimens strengthened with NSM systems (carbon, basalt, and glass bars, and carbon strips). Single shear tests (SST) were carried out on concrete prisms with low compressive strengths to investigate the bonding behavior of existing RC structures strengthened with different types of FRP systems. The performance of each reinforcement system is presented, discussed, and compared in terms of failure mode, debonding load, load-slip relationship, and strain distribution. The findings indicate that the NSM technique could represent a sound alternative to EBR systems because it allows debonding to be delayed, and hence FRP tensile strength to be better exploited.

209 citations

Journal ArticleDOI
TL;DR: In this article, a Round Robin Test aimed to the characterization of both bond with the existing substrate and tensile performance of glass fabric (in the form of grids) coupled with inorganic mortar matrices is presented.
Abstract: Fibre-reinforced composite materials have gained an increasing success, mostly for strengthening, retrofitting, and repairing existing structures. However some problems may arise with the use of traditional FRP (Fiber Reinforced Polymer), particularly when the compatibility with the substrate and the reversibility of the intervention are required, as in case of cultural heritage buildings, or specific exposition conditions may compromise the long term effectiveness of the reinforcement, as in presence of high temperature and humidity. Starting from these considerations new composite materials are emerging as a more effective solution in certain fields of application and under specific service conditions; in this context, mortar-based composite systems, consisting of one or more layers of uni- or bi-directional fibre nets embedded in cement/lime-based matrix layers, can be used as reinforcement of both concrete and masonry structures. However, the research work dealing with these emerging materials and their performances when used as a strengthening system for existing structures is still limited. Both experimental and theoretical investigations are needed in order to deliver reliable design methodologies. In this work, a Round Robin Test aimed to the characterization of both bond with the existing substrate and tensile performance of glass fabric (in the form of grids) coupled with inorganic mortar matrices is presented. The investigation was conducted at fifteen laboratories involved in the RILEM Technical Committee 250-CSM (Composites for the Sustainable Strengthening of Masonry). With the aim of studying the bond behaviour between Fabric Reinforced Cementitious Matrix (FRCM) composites and masonry substrate, single and double lap shear tests were carried out on brick-masonry prisms. Results provide useful informations about the mechanical properties, the bond capacity and the failure mechanisms of different commercially available glass FRCM systems. Finally, critical aspects are underlined to address the progress of the research work.

173 citations

Journal ArticleDOI
TL;DR: In this paper, a state-of-the-art of the art of durability of FRP rebars is presented in order to highlight issues related to the material properties and interaction mechanisms which influence the service life of reinforced concrete elements.
Abstract: The use of fibre reinforced polymers (FRPs) as rebars in reinforced concrete (RC) elements is a viable means to prevent corrosion effects that reduce the service life of members employing steel reinforcement. However, durability of FRP rebars is not straightforward as it is related to material properties as well as bar–concrete interaction. A state of the art of durability of FRP rebars is presented herein in order to highlight issues related to the material properties and interaction mechanisms which influence the service life of RC elements. The design approach implemented in international codes is discussed and the reduction factors taking into account the durability performances are summarized.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of an extensive experimental program on different combinations of basalt fibre textiles and inorganic matrices organized by RILEM TC 250-CSM (Composites for the Sustainable strengthening of Masonry) involving ten European laboratories.
Abstract: An increasing interest and application is nowadays found for composite systems in construction and rehabilitation industry. The consensus on fibre reinforced composite systems was mainly based on high tensile strength, light weight, relative ease of installation, and resistance to corrosion. However, some drawbacks related to the epoxy (hence, organic) matrices of Fiber-Reinforced Polymers (FRP) have been solved by inorganic ones yielding to novel fibre reinforced composites. In these materials the composite action is mainly achieved through mechanical interlock between the matrix (e.g. a cement- or a lime-based mortar or a geopolymer with the option of chopped fibres and/or low-content polymer addition) and the mesh-like fibrous structure (a textile) that allows the mortar to protrude through the grid's openings. Aiming at the investigation of the mechanical properties and the development of testing procedures for this new family of materials (termed herein as Fabric-Reinforced Cementitious Matrix (FRCM)) the present paper presents the results of an extensive experimental program on different combinations of basalt fibre textiles and inorganic matrices organized by RILEM TC 250-CSM (Composites for the Sustainable strengthening of Masonry) involving ten European laboratories. The tests involve more than 100 specimens: half are tensile tests and the other half are bond tests carried out on prisms made of clay bricks, on three different basalt-based FRCM configurations comprising readily available commercial systems provided by different producers. The scope of this work is aimed not only at presenting a comparative performance assessment of different Basalt FRCM systems, but also at providing meaningful criteria to reliably design and analyse retrofit applications. The relevant round robin test program provides valuable data generated during the experimental activity and statistical analysis thereof; then, based on the various testing approaches employed, the advantages/drawbacks of certain testing factors are summarized and critically assessed, reflecting the experience of involved institutions. It is believed that this represents a crucial step in improving knowledge on innovative retrofit applications and developing standard test methods.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss the development of the advanced polymer composite material applications in the building and civil/structural infrastructure over the past three to four decades and highlight the important in-service research areas which are necessary to improve the understanding of the behavior of FRP materials and FRP structural components.

946 citations

Journal ArticleDOI
TL;DR: A critical review of existing studies on the effects of using sea-sand and/or seawater as raw materials of concrete on the properties of the resulting concrete, including its workability, short and long-term strength as well as durability is presented in this paper.

471 citations

01 Jan 2016
TL;DR: In this article, the seismic design of reinforced concrete and masonry buildings was downloaded from the Internet and it was found to be harmful for reading a good book with a cup of coffee in the afternoon.
Abstract: Thank you very much for downloading seismic design of reinforced concrete and masonry buildings. As you may know, people have look hundreds times for their chosen novels like this seismic design of reinforced concrete and masonry buildings, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some infectious virus inside their laptop.

345 citations

Journal ArticleDOI
TL;DR: In this article, the long-term performance of basalt and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete (SWSSC) environment was investigated.

315 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of experimental studies conducted in the area of fiber-reinforced polymer (FRP) anchorage systems applied to reinforced concrete (RC) flexural members.
Abstract: The anchorage of fiber-reinforced polymer (FRP) composites when applied to reinforced concrete (RC) structures as externally bonded reinforcement is an effective means to achieve higher levels of fiber utilization prior to premature debonding failure. Commonly documented anchorage methods for FRP-to-concrete applications demonstrating encouraging results include FRP U-jackets, FRP anchors (also known as spike anchors, among other names), patch anchors (utilizing unidirectional and bidirectional fabrics), nailed metal plates (also known as hybrid bonding), near-surface mounted rods, mechanical fastening, concrete embedment, and mechanical substrate strengthening. Anchorages applied to FRP systems have been verified through experimental testing and numerical modeling to increase the ductility, deformability, and strength of the member and also prevent, delay, or shift the critical mode of FRP debonding failure. Although the benefits of anchorage solutions have now been widely acknowledged by researchers, further studies are required in order to establish reliable design formulations to negate the requirement for ongoing laboratory verification by industry. The present paper is a state-of-the-art review of experimental studies conducted in the area of FRP anchorage systems applied to FRP-strengthened RC flexural members. Available experimental data are compiled and catalogued and an anchorage efficiency factor for each anchorage type under investigation is assigned in order to quantify the anchor’s efficiency. Finally, current shortcomings in knowledge are identified, in addition to areas needing further investigation.

260 citations