scispace - formally typeset
Search or ask a question
Author

Francesca Maria Bosisio

Bio: Francesca Maria Bosisio is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Melanoma & Cytotoxic T cell. The author has an hindex of 14, co-authored 58 publications receiving 672 citations. Previous affiliations of Francesca Maria Bosisio include Medical University of Graz & University of Milan.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This work profiles 233,591 single cells from patients with lung, colorectal, ovary and breast cancer and constructs a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies, generating the first panoramic view on the shared complexity of stronal cells in different cancers.
Abstract: The stromal compartment of the tumor microenvironment consists of a heterogeneous set of tissue-resident and tumor-infiltrating cells, which are profoundly moulded by cancer cells An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n = 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences Resident cell types are characterised by substantial tissue specificity, while tumor-infiltrating cell types are largely shared across cancer types Finally, by applying the blueprint to melanoma tumors treated with checkpoint immunotherapy and identifying a naive CD4+ T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate the first panoramic view on the shared complexity of stromal cells in different cancers

277 citations

Journal ArticleDOI
TL;DR: This article employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence.
Abstract: Glioblastomas are aggressive primary brain cancers that recur as therapy-resistant tumors. Myeloid cells control glioblastoma malignancy, but their dynamics during disease progression remain poorly understood. Here, we employed single-cell RNA sequencing and CITE-seq to map the glioblastoma immune landscape in mouse tumors and in patients with newly diagnosed disease or recurrence. This revealed a large and diverse myeloid compartment, with dendritic cell and macrophage populations that were conserved across species and dynamic across disease stages. Tumor-associated macrophages (TAMs) consisted of microglia- or monocyte-derived populations, with both exhibiting additional heterogeneity, including subsets with conserved lipid and hypoxic signatures. Microglia- and monocyte-derived TAMs were self-renewing populations that competed for space and could be depleted via CSF1R blockade. Microglia-derived TAMs were predominant in newly diagnosed tumors, but were outnumbered by monocyte-derived TAMs following recurrence, especially in hypoxic tumor environments. Our results unravel the glioblastoma myeloid landscape and provide a framework for future therapeutic interventions.

198 citations

Journal ArticleDOI
TL;DR: A myeloid-driven immunopathology is suggested, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.
Abstract: Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.

148 citations

Journal ArticleDOI
TL;DR: This work has validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners for multiplexing on routine tissue sections, a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.
Abstract: Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.

110 citations

Posted ContentDOI
02 Apr 2020-bioRxiv
TL;DR: A first panoramic view on the shared complexity of stromal cells in different cancers is generated by providing a comprehensive blueprint through an interactive web server.
Abstract: The stromal compartment of the tumour microenvironment consists of a heterogeneous set of tissue-resident and tumour-infiltrating cells, which are profoundly moulded by cancer cells. An outstanding question is to what extent this heterogeneity is similar between cancers affecting different organs. Here, we profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n=36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different single-cell RNA and protein-based technologies. We identify 68 stromal cell populations, of which 46 are shared between cancer types and 22 are unique. We also characterise each population phenotypically by highlighting its marker genes, transcription factors, metabolic activities and tissue-specific expression differences. Resident cell types are characterised by substantial tissue specificity, while tumour-infiltrating cell types are largely shared across cancer types. Finally, by applying the blueprint to melanoma tumours treated with checkpoint immunotherapy and identifying a naive CD4+ T-cell phenotype predictive of response to checkpoint immunotherapy, we illustrate how it can serve as a guide to interpret scRNA-seq data. In conclusion, by providing a comprehensive blueprint through an interactive web server, we generate a first panoramic view on the shared complexity of stromal cells in different cancers.

103 citations


Cited by
More filters
Book
29 Sep 2017
TL;DR: Thank you very much for reading who classification of tumours of haematopoietic and lymphoid tissues, and maybe you have knowledge that, people have look hundreds of times for their chosen readings like this, but end up in malicious downloads.
Abstract: WHO CLASSIFICATION OF TUMOURS OF HAEMATOPOIETIC AND LYMPHOID TISSUES , WHO CLASSIFICATION OF TUMOURS OF HAEMATOPOIETIC AND LYMPHOID TISSUES , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

13,835 citations

01 Jan 2010
TL;DR: The data demonstrate a role for CD141+ DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Abstract: The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.

859 citations

01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations

Journal ArticleDOI
TL;DR: An overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroPTosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression is provided.
Abstract: Ferroptosis is a recently recognized cell death modality that is morphologically, biochemically and genetically distinct from other forms of cell death and that has emerged to play an important role in cancer biology. Recent discoveries have highlighted the metabolic plasticity of cancer cells and have provided intriguing insights into how metabolic rewiring is a critical event for the persistence, dedifferentiation and expansion of cancer cells. In some cases, this metabolic reprogramming has been linked to an acquired sensitivity to ferroptosis, thus opening up new opportunities to treat therapy-insensitive tumours. However, it is not yet clear what metabolic determinants are critical for therapeutic resistance and evasion of immune surveillance. Therefore, a better understanding of the processes that regulate ferroptosis sensitivity should ultimately aid in the discovery of novel therapeutic strategies to improve cancer treatment. In this Perspectives article, we provide an overview of the known mechanisms that regulate sensitivity to ferroptosis in cancer cells and how the modulation of metabolic pathways controlling ferroptosis might reshape the tumour niche, leading to an immunosuppressive microenvironment that promotes tumour growth and progression.

625 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of the current therapies targeting the tumor microenvironment (TME) is provided in this paper, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives.
Abstract: Strategies to therapeutically target the tumor microenvironment (TME) have emerged as a promising approach for cancer treatment in recent years due to the critical roles of the TME in regulating tumor progression and modulating response to standard-of-care therapies Here, we summarize the current knowledge regarding the most advanced TME-directed therapies, which have either been clinically approved or are currently being evaluated in trials, including immunotherapies, antiangiogenic drugs, and treatments directed against cancer-associated fibroblasts and the extracellular matrix We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field SIGNIFICANCE: This review provides a comprehensive analysis of the current therapies targeting the TME, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives

418 citations