scispace - formally typeset
Search or ask a question
Author

Francesco M. Marincola

Bio: Francesco M. Marincola is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Immune system & Antigen. The author has an hindex of 94, co-authored 462 publications receiving 38129 citations. Previous affiliations of Francesco M. Marincola include Society for Immunotherapy of Cancer & Virginia Commonwealth University.


Papers
More filters
Journal ArticleDOI
03 Aug 2000-Nature
TL;DR: Many genes underlying the classification of this subset of melanomas are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas.
Abstract: The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.

2,058 citations

Journal ArticleDOI
TL;DR: A synthetic peptide, designed to increase binding to HLA-A2 molecules, was used as a cancer vaccine to treat patients with metastatic melanoma and, on the basis of immunologic assays, 91% of patients could be successfully immunized with this peptide.
Abstract: The cloning of the genes encoding cancer antigens has opened new possibilities for the treatment of patients with cancer. In this study, immunodominant peptides from the gp100 melanoma-associated antigen were identified, and a synthetic peptide, designed to increase binding to HLA-A2 molecules, was used as a cancer vaccine to treat patients with metastatic melanoma. On the basis of immunologic assays, 91% of patients could be successfully immunized with this synthetic peptide, and 13 of 31 patients (42%) receiving the peptide vaccine plus IL-2 had objective cancer responses, and four additional patients had mixed or minor responses. Synthetic peptide vaccines based on the genes encoding cancer antigens hold promise for the development of novel cancer immunotherapies.

1,842 citations

Journal ArticleDOI
TL;DR: A long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells is described.
Abstract: Immunological memory is thought to depend on a stem cell–like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell–like memory T cell population is of direct relevance to the design of vaccines and T cell therapies.

1,526 citations

Book ChapterDOI
TL;DR: This important finding suggests that TAA-specific CTL may be present in some cancer patients but are unable to attack tumor cells due to the presence of inhibitory receptors.
Abstract: Publisher Summary It is known for some time that malignant transformation of human cells may be associated with the appearance of tumor associated antigens (TAA). Decades of research have been aimed at the identification of TAA that can serve as targets for the immunotherapy of malignant diseases. The dramatic progress in the understanding of molecular basis of target cell recognition by cytotoxic T lymphocytes (CTL) has provided the background to design effective strategies to identify TAA recognized by CTL on tumor cells. The extensive application of these strategies by a number of investigators has resulted in the identification of various families of TAA on various types of solid tumors. Mouse tumor models have played an important role in elucidating the mechanisms by which the immune system interacts with tumor cells and eradicates cancer. The second line of evidence is represented by the phenomenon of a “mixed response.” A mixed response occurs rather frequently in patients with metastases, although its actual frequency is not documented. Mixed responses are characterized by the different behavior of synchronous metastases in response to T cell-based immunotherapy. This important finding suggests that TAA-specific CTL may be present in some cancer patients but are unable to attack tumor cells due to the presence of inhibitory receptors.

1,192 citations

Journal ArticleDOI
TL;DR: In colorectal cancer, the Immunoscore may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a prognostic factor superior to the AJCC or UICCTNM classification.
Abstract: The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM staging system provides the most reliable guidelines for the routine prognostication and treatment of colorectal carcinoma. This traditional tumour staging summarizes data on tumour burden (T), the presence of cancer cells in draining and regional lymph nodes (N) and evidence for distant metastases (M). However, it is now recognized that the clinical outcome can vary significantly among patients within the same stage. The current classification provides limited prognostic information and does not predict response to therapy. Multiple ways to classify cancer and to distinguish different subtypes of colorectal cancer have been proposed, including morphology, cell origin, molecular pathways, mutation status and gene expression-based stratification. These parameters rely on tumour-cell characteristics. Extensive literature has investigated the host immune response against cancer and demonstrated the prognostic impact of the in situ immune cell infiltrate in tumours. A methodology named 'Immunoscore' has been defined to quantify the in situ immune infiltrate. In colorectal cancer, the Immunoscore may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a prognostic factor superior to the AJCC/UICC TNM classification. An international consortium has been initiated to validate and promote the Immunoscore in routine clinical settings. The results of this international consortium may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).

1,128 citations


Cited by
More filters
Journal ArticleDOI
01 Nov 2001-Nature
TL;DR: Stem cell biology has come of age: Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine.
Abstract: Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' - rare cells with indefinite potential for self-renewal that drive tumorigenesis.

8,999 citations

Journal ArticleDOI
TL;DR: It is reported here that, except for cells of the macrophage lineage, normal human tissues do not express B7-H1 and the findings have implications for the design of T cell–based cancer immunotherapy.
Abstract: B7-H1, a recently described member of the B7 family of costimulatory molecules, is thought to be involved in the regulation of cellular and humoral immune responses through the PD-1 receptor on activated T and B cells. We report here that, except for cells of the macrophage lineage, normal human tissues do not express B7-H1. In contrast, B7-H1 is abundant in human carcinomas of lung, ovary and colon and in melanomas. The pro-inflammatory cytokine interferon-gamma upregulates B7-H1 on the surface of tumor cell lines. Cancer cell-associated B7-H1 increases apoptosis of antigen-specific human T-cell clones in vitro, and the apoptotic effect of B7-H1 is mediated largely by one or more receptors other than PD-1. In addition, expression of B7-H1 on mouse P815 tumor increases apoptosis of activated tumor-reactive T cells and promotes the growth of highly immunogenic B7-1(+) tumors in vivo. These findings have implications for the design of T cell-based cancer immunotherapy.

4,290 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: In high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses.

3,257 citations

Journal ArticleDOI
22 Dec 2011-Nature
TL;DR: In the context of advances in the understanding of how tolerance, immunity and immunosuppression regulate antitumour immune responses, these successes suggest that active immunotherapy represents a path to obtain a durable and long-lasting response in cancer patients.
Abstract: Activating the immune system for therapeutic benefit in cancer has long been a goal in immunology and oncology. After decades of disappointment, the tide has finally changed due to the success of recent proof-of-concept clinical trials. Most notable has been the ability of the anti-CTLA4 antibody, ipilimumab, to achieve a significant increase in survival for patients with metastatic melanoma, for which conventional therapies have failed. In the context of advances in the understanding of how tolerance, immunity and immunosuppression regulate antitumour immune responses together with the advent of targeted therapies, these successes suggest that active immunotherapy represents a path to obtain a durable and long-lasting response in cancer patients.

3,132 citations

Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: As the molecular mechanisms of resistance to immunotherapy are elucidated, actionable strategies to prevent or treat them may be derived to improve clinical outcomes for patients.

3,131 citations