scispace - formally typeset
Search or ask a question
Author

Francesco Massaro

Bio: Francesco Massaro is an academic researcher from University of Turin. The author has contributed to research in topics: Blazar & Radio galaxy. The author has an hindex of 59, co-authored 260 publications receiving 12785 citations. Previous affiliations of Francesco Massaro include Smithsonian Institution & Yale University.


Papers
More filters
Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Marco Ajello3, Alice Allafort4  +254 moreInstitutions (60)
TL;DR: In this article, a catalog of gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite is presented.
Abstract: This catalog summarizes 117 high-confidence > 0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data, through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

929 citations

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Alice Allafort2, Luca Baldini3  +197 moreInstitutions (42)
15 Feb 2013-Science
TL;DR: The characteristic pion-decay feature is detected in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope, providing direct evidence that cosmic-ray protons are accelerated in SNRs.
Abstract: Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

846 citations

Journal ArticleDOI
Markus Ackermann, Marco Ajello, Andrea Albert, W. B. Atwood, Luca Baldini, Jean Ballet, Guido Barbiellini, Denis Bastieri, Keith Bechtol, Ronaldo Bellazzini, Elisabetta Bissaldi, Roger Blandford, E. D. Bloom, Eugenio Bottacini, T. J. Brandt, Johan Bregeon, P. Bruel, R. Buehler, Sara Buson, G. A. Caliandro, R. A. Cameron, M. Caragiulo, P. A. Caraveo, E. Cavazzuti, Claudia Cecchi, E. Charles, A. Chekhtman, James Chiang, G. Chiaro, Stefano Ciprini, R. Claus, Johann Cohen-Tanugi, Jan Conrad, Alessandro Cuoco, S. Cutini, F. D'Ammando, A. De Angelis, F. de Palma, Charles D. Dermer, Seth Digel, E. Do Couto E Silva, Persis S. Drell, C. Favuzzi, E. C. Ferrara, W. B. Focke, Anna Franckowiak, Yasushi Fukazawa, Stefan Funk, P. Fusco, F. Gargano, Dario Gasparrini, S. Germani, Nicola Giglietto, P. Giommi, Ferdinando Giordano, Marcello Giroletti, G. Godfrey, G. A. Gomez-Vargas, I. A. Grenier, Sylvain Guiriec, Michael Gustafsson, Daniela Hadasch, K. Hayashi, E. Hays, John W. Hewitt, P. Ippoliti, T. Jogler, Gudlaugur Johannesson, A. S. Johnson, W. N. Johnson, T. Kamae, Jun Kataoka, Jürgen Knödlseder, M. Kuss, Stefan Larsson, Luca Latronico, J. Li, Liang Li, Francesco Longo, F. Loparco, B. Lott, M. N. Lovellette, P. Lubrano, G. M. Madejski, Alberto Manfreda, Francesco Massaro, M. Mayer, M. N. Mazziotta, Julie McEnery, P. F. Michelson, W. Mitthumsiri, Tsunefumi Mizuno, A. A. Moiseev, M. E. Monzani, A. Morselli, Igor V. Moskalenko, S. Murgia, Rodrigo Nemmen, E. Nuss, T. Ohsugi, Nicola Omodei, E. Orlando, J. F. Ormes, David Paneque, J.H. Panetta, J. S. Perkins, Melissa Pesce-Rollins, F. Piron, G. Pivato, T. A. Porter, S. Rainò, R. Rando, M. Razzano, Soebur Razzaque, A. Reimer, Olaf Reimer, T. Reposeur, Steven Ritz, R. W. Romani, Miguel A. Sánchez-Conde, M. Schaal, André Schulz, Carmelo Sgrò, E. J. Siskind, Gloria Spandre, P. Spinelli, Andrew W. Strong, D. J. Suson, Hiromitsu Takahashi, J. G. Thayer, J. B. Thayer, L. Tibaldo, M. Tinivella, Diego F. Torres, Gino Tosti, Eleonora Troja, Yasunobu Uchiyama, Giacomo Vianello, Michael David Werner, Brian L Winer, K. S. Wood, Matthew J.A. Wood, Gabrijela Zaharijas, Shanta M. Zimmer 
TL;DR: The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of $2.32\pm0.02$ and a break energy of $(279\pm52)$ GeV using our baseline diffuse Galactic emission model as mentioned in this paper.
Abstract: The {\gamma}-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse {\gamma}-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of $2.32\pm0.02$ and a break energy of $(279\pm52)$ GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is $(7.2\pm0.6) \times 10^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$ above 100 MeV, with an additional $+15$%/$-30$% systematic uncertainty due to the Galactic diffuse foregrounds.

696 citations

Journal ArticleDOI
Markus Ackermann, Marco Ajello1, Andrea Albert2, W. B. Atwood3  +174 moreInstitutions (43)
TL;DR: The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV.
Abstract: The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

680 citations

Journal ArticleDOI
TL;DR: In this paper, optical and ultraviolet spectra of the binary neutron star merger GW170817 were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes.
Abstract: We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\sim 7900$ A at $t\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\lesssim 140$. This indicates a sight-line within $\theta_{\rm obs}\lesssim 45^{\circ}$ of the orbital axis. Comparison to models suggests $\sim0.03$ M$_\odot$ of blue ejecta, with a velocity of $\sim 0.3c$. The required lanthanide fraction is $\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

353 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations

15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations