scispace - formally typeset
Search or ask a question
Author

Francesco Mauri

Bio: Francesco Mauri is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Graphene & Phonon. The author has an hindex of 85, co-authored 352 publications receiving 69332 citations. Previous affiliations of Francesco Mauri include University of Texas at Arlington & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a new pathway to determine the phonon dispersions down to the scale of an individual freestanding graphene monolayer by mapping the distinct vibration modes for a large momentum transfer.
Abstract: Propagating atomic vibrational waves, phonons, rule important thermal, mechanical, optoelectronic and transport characteristics of materials. Thus the knowledge of phonon dispersion, namely the dependence of vibrational energy on momentum is a key ingredient to understand and optimize the material's behavior. However, despite its scientific importance in the last decade, the phonon dispersion of a freestanding monolayer of two dimensional (2D) materials such as graphene and its local variations has still remained elusive because of experimental limitations of vibrational spectroscopy. Even though electron energy loss spectroscopy (EELS) in transmission has recently been shown to probe the local vibrational charge responses, these studies are yet limited to polar materials like boron nitride or oxides, in which huge signals induced by strong dipole moments are present. On the other hand, measurements on graphene performed by inelastic x-ray (neutron) scattering spectroscopy or EELS in reflection do not have any spatial resolution and require large microcrystals. Here we provide a new pathway to determine the phonon dispersions down to the scale of an individual freestanding graphene monolayer by mapping the distinct vibration modes for a large momentum transfer. The measured scattering intensities are accurately reproduced and interpreted with density functional perturbation theory (DFPT). Additionally, a nanometre-scale mapping of selected momentum (q) resolved vibration modes using graphene nanoribbon structures has enabled us to spatially disentangle bulk, edge and surface vibrations.

79 citations

Posted Content
TL;DR: In this paper, a density-functional theory (DFT) study of the phonon properties of a (9, 9) metallic SWNT as a function of electronic doping is presented.
Abstract: The high-frequency Raman-active phonon modes of metallic single-walled carbon nanotubes (SWNTs) are thought to be characterized by Kohn anomalies (KAs), which are expected to be modified by the doping-induced tuning of the Fermi energy level $\epsilon_F$, obtained through the intercalation of SWNTs with alkali atoms or by the application of a gate potential. We present a Density-Functional Theory (DFT) study of the phonon properties of a (9,9) metallic SWNT as a function of electronic doping. For such study, we use, as in standard DFT calculations of vibrational properties, the Born-Oppenheimer (BO) approximation. We also develop an analytical model capable of reproducing and interpreting our DFT results. Both DFT calculations and this model predict, for increasing doping levels, a series of EPC-induced KAs in the vibrational mode parallel to the tube axis at the $\mathbf\Gamma$ point of the Brillouin zone, usually indicated in Raman spectroscopy as the $G^-$ peak. Such KAs would arise each time a new conduction band is populated. However, we show that they are an artifact of the BO approximation. The inclusion of non-adiabatic (NA) effects dramatically affects the results, predicting KAs at $\mathbf\Gamma$ only when $\epsilon_F$ is close to a band crossing $E_{X}$. For each band crossing a double KA occurs for $\epsilon_F=E_{X}\pm \hbar\omega/2$, where $\hbar\omega$ is the phonon energy. In particular, for a 1.2 $nm$ metallic nanotube, we predict a KA to occur in the so-called $G^-$ peak at a doping level of about $N_{el}/C=\pm 0.0015$ atom ($\epsilon_F\approx \pm 0.1 ~eV$). Furthermore, we predict that the Raman linewidth of the $G^-$ peak significantly decreases for $|\epsilon_F| \geq \hbar\omega/2$.

78 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a general scheme for the computation of the time-dependent quadratic susceptibility of an extended insulator obtained by applying the 2n+1 theorem to the action functional as defined in TD density-functional theory.
Abstract: We present a general scheme for the computation of the time-dependent (TD) quadratic susceptibility (${\mathrm{\ensuremath{\chi}}}^{(2)}$) of an extended insulator obtained by applying the ``2n+1'' theorem to the action functional as defined in TD density-functional theory. The resulting expression for ${\mathrm{\ensuremath{\chi}}}^{(2)}$ includes self-consistent local-field effects, and is a simple function of the linear response of the system. We compute the static ${\mathrm{\ensuremath{\chi}}}^{(2)}$ of nine III-V and five II-VI semiconductors using the local density approximation (LDA), obtaining good agreement with experiment. For GaP we also evaluate the TD ${\mathrm{\ensuremath{\chi}}}^{(2)}$ for second-harmonic generation using TD-LDA. \textcopyright{} 1996 The American Physical Society.

78 citations

Journal ArticleDOI
TL;DR: The method is validated by comparison with existing quantum chemical calculations of solution-state systems and with experimental data, and has also been applied to the silicophosphate, giving (31)P-(29)Si-couplings which are in excellent agreement with experiment.
Abstract: A method to calculate NMR J-coupling constants from first principles in extended systems is presented. It is based on density functional theory and is formulated within a planewave-pseudopotential framework. The all-electron properties are recovered using the projector augmented wave approach. The method is validated by comparison with existing quantum chemical calculations of solution-state systems and with experimental data. The approach has also been applied to the silicophosphate, Si5O(PO4)6, giving P31–Si29-couplings which are in excellent agreement with experiment.

77 citations

Journal ArticleDOI
TL;DR: In this article, the authors compute the anharmonic shift of the phonon frequencies in the Brillouin zone using density functional theory, taking into account the scattering between different phonon modes at different q points in the zone.
Abstract: We compute the anharmonic shift of the phonon frequencies in ${\mathrm{MgB}}_{2},$ using density functional theory. We explicitly take into account the scattering between different phonon modes at different q points in the Brillouin zone. The shift of the ${E}_{2g}$ mode at the $\ensuremath{\Gamma}$ point is only $+5%$ of the harmonic frequency, therefore questioning the accepted explanation of the anomalous isotope effect on the critical temperature. This result comes from the cancellation between the contributions of the four- and three-phonon scattering, respectively, $+10%$ and $\ensuremath{-}5%.$ A similar shift is predicted at the A point, in agreement with inelastic x-ray scattering phonon-dispersion measurements.

76 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations