scispace - formally typeset
Search or ask a question
Author

Francesco Mauri

Bio: Francesco Mauri is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Graphene & Phonon. The author has an hindex of 85, co-authored 352 publications receiving 69332 citations. Previous affiliations of Francesco Mauri include University of Texas at Arlington & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a DFT-based method is presented which allows the computation of all-electron NMR shifts of metallic compounds with periodic boundary conditions, which is validated by comparing the magnetic susceptibility of interacting and noninteracting homogeneous gas with known analytical results.
Abstract: A DFT-based method is presented which allows the computation of all-electron NMR shifts of metallic compounds with periodic boundary conditions. NMR shifts in metals measure two competing physical phenomena. Electrons interact with the applied magnetic field (i) as magnetic dipoles (or spins), resulting in the Knight shift, and (ii) as moving electric charges, resulting in the chemical (or orbital) shift. The latter is treated through an extension to metals of the gauge-invariant projector augmented wave developed for insulators. The former is modeled as the hyperfine interaction between the electronic spin polarization and the nuclear dipoles. NMR shifts are obtained with respect to the computed shieldings of reference compounds, yielding fully ab initio quantities which are directly comparable to experiment. The method is validated by comparing the magnetic susceptibility of interacting and noninteracting homogeneous gas with known analytical results, and by comparing the computed NMR shifts of simple metals with experiment.

46 citations

Journal ArticleDOI
TL;DR: In this paper, the conditions which favor crystallization or vitrication of liquids have been a long-standingscientific problem, and not yet fully understood question is the relationship betweenthe glassy and the various possible crystalline forms a system may adopt.
Abstract: Physikalisch-Chemisches Institut der Universita¨t Zu¨rich, Winterthurerstrasse 190, CH-8057, Switzerland.(Dated: September 18, 2012)Understanding the conditions which favor crystallisation or vitrification of liquids has been a long-standingscientific problem [1–3]. Another connected, and not yet wel l understood question is the relationship betweenthe glassy and the various possible crystalline forms a system may adopt [4, 5]. In this context, B

45 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the temperature dependence of phonon spectra in NbS2 bulk and single layer as a function of pressure/strain and demonstrate the removal of charge ordering due to anharmonicity.
Abstract: At ambient pressure, bulk 2H-NbS2 displays no charge density wave instability, which is at odds with the isostructural and isoelectronic compounds 2H-NbSe2, 2H-TaS2, and 2H-TaSe2, and in disagreement with harmonic calculations. Contradictory experimental results have been reported in supported single layers, as 1H-NbS2 on Au(111) does not display a charge density wave, whereas 1H-NbS2 on 6H-SiC(0001) endures a 3 × 3 reconstruction. Here, by carrying out quantum anharmonic calculations from first-principles, we evaluate the temperature dependence of phonon spectra in NbS2 bulk and single layer as a function of pressure/strain. For bulk 2H-NbS2, we find excellent agreement with inelastic X-ray spectra and demonstrate the removal of charge ordering due to anharmonicity. In the two-dimensional limit, we find an enhanced tendency toward charge density wave order. Freestanding 1H-NbS2 undergoes a 3 × 3 reconstruction, in agreement with data on 6H-SiC(0001) supported samples. Moreover, as strains smaller than 0.5% in the lattice parameter are enough to completely remove the 3 × 3 superstructure, deposition of 1H-NbS2 on flexible substrates or a small charge transfer via field-effect could lead to devices with dynamical switching on/off of charge order.

44 citations

Journal ArticleDOI
TL;DR: In this paper, a novel, biocompatible, calcium-based coordination polymer was hydrothermally synthesized using as linker the bone antiresorptive bisphosphonate alendronate.
Abstract: A novel, biocompatible, calcium-based coordination polymer was hydrothermally synthesized using as linker the bone antiresorptive bisphosphonate alendronate. Its structure was determined using single-crystal X-ray diffraction and characterized by chemical analysis, infrared spectroscopy (IR), X-ray powder diffraction (XRPD), solid state nuclear magnetic resonance (NMR) and thermogravimetric analysis (TGA). Its bioactivity was finally evaluated in vitro, revealing a very high stability towards simulated body fluid.

44 citations

Journal ArticleDOI
TL;DR: This work applies the notion of electronic enthalpy for first-principles structural and dynamical calculations of finite systems under pressure to the study of group-IV nanoparticles during a shock wave, highlighting the significant differences in the plastic or elastic response of the diamond cage under load.
Abstract: We introduce the notion of electronic enthalpy for first-principles structural and dynamical calculations of finite systems under pressure. An external pressure field is allowed to act directly on the electronic structure of the system studied via the ground-state minimization of the functional E+PV(q), where V(q) is the quantum volume enclosed by a charge isosurface. The Hellmann-Feynman theorem applies, and assures that the ionic equations of motion follow an isoenthalpic dynamics. No pressurizing medium is explicitly required, while coatings of environmental ions or ligands can be introduced if chemically relevant. We apply this novel approach to the study of group-IV nanoparticles during a shock wave, highlighting the significant differences in the plastic or elastic response of the diamond cage under load, and their potential use as novel nanostructured impact-absorbing materials.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations