scispace - formally typeset
Search or ask a question
Author

Francesco Mauri

Bio: Francesco Mauri is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Graphene & Phonon. The author has an hindex of 85, co-authored 352 publications receiving 69332 citations. Previous affiliations of Francesco Mauri include University of Texas at Arlington & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors theoretically investigated the local structure of the aperiodic states of zircon (ZrSiO 4 ) using ab initio quantum mechanical calculations.
Abstract: We theoretically investigated the local structure of the aperiodic states of zircon (ZrSiO 4 ) using ab initio quantum mechanical calculations. The low and high density liquid and solid glassy phases were obtained by constant volume Car-Parrinello molecular dynamics simulations, using the molar volume of metamict and crystalline zircon, respectively. As in naturally metamict zircons, the polymerization of Si units, the segregation of Zr atoms, and an overall decrease of the Zr coordination were observed. However, the local ordering of our theoretical glasses differs from that of the natural amorphous samples. In the theoretical glasses, the Zr-O distances in the first coordination polyhedra are significantly more distributed and five- and six-coordinated Si species were observed. The relaxation of the glass structure on a time scale exceeding the possibility of molecular modeling is a possible explanation for these discrepancies. The dielectric and 2 9 Si NMR responses of the glassy phases were computed, providing new constraints for the analysis of experimental data recorded from metamict zircons. The calculated NMR spectra are in good agreement with the experimental NMR spectra in the four-coordinated Si region. Our results show that the usual regular systematic decrease of the 2 9 Si chemical shift as a function of the polymerization of Si units (Q n species) cannot be used to interpret the 2 9 Si NMR spectrum of amorphous zircon. In particular, whereas the empirical scale would indicate an average polymerization of Q 3 , the average polymerization of Q 1 . 5 observed in the low density zircon glass can account for the experimental data. In a non-uniform model of the structure of metamict zircon, this lower average polymerization is consistent with a clustering of cations limited to few coordination polyhedra.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the structural properties of carbon nanotubes can be derived from 13C NMR investigations using a detailed experimental and theoretical study on how diameter and number of nanotube walls influence NMR linewidth and line position.
Abstract: We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single-and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position d. We show that the isotropic line follows the relation d = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position d is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

28 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that velocity-selective coherent population trapping in one dimension may be realized in atomic transitions other than Jg = 1 ↔ Je = 1.
Abstract: We show theoretically that velocity-selective coherent population trapping in one dimension may be realized in atomic transitions other than Jg = 1 ↔ Je = 1. The atomic momentum distribution resulting from irradiation by counterpropagating σ+–σ− waves on the Jg = 3/2 ↔ Je = 1/2 and the Jg = 2 ↔ Je = 1 atomic transitions is investigated through solution of the optical Bloch equations and determination of the effective loss rates for atomic eigenstates. An inverted-W atomic level configuration is also used to investigate the features of velocity-selective coherent population trapping. The momentum distribution exhibits peaks at the ±ħk or the ±ħ2k and the 0 momenta, depending on the atomic transitions and the laser intensity. These structures, generated by atomic states that do not interact with the laser radiation, are stable when associated with eigenstates of the kinetic energy, or metastables; i.e., the structures last several hundred spontaneous lifetimes when generated by nonexact kinetic-energy eigenstates.

28 citations

Journal ArticleDOI
TL;DR: This short review discusses the ability to reproduce NMR parameters in the case of phosphates materials through electronic structure calculation within density functional theory linear response and emphasise on the crucial points that should be taken into account to perform such calculations.
Abstract: In this short review, we discuss the ability to reproduce NMR parameters in the case of phosphates materials through electronic structure calculation within density functional theory linear response. Indeed, the gauge-including projector-augmented wave is today largely used by the solid-state NMR community as a tool for structural determination and it has been applied to a large variety of materials. We emphasise on the crucial points that should be taken into account to perform such calculations. In particular, we discuss the influence of the electronic structure and of the geometry on the calculation of NMR parameters. To illustrate the review, we present experimental and theoretical comparison of (31)P, (1)H and (23)Na NMR data on a series of sodium phosphate systems.

27 citations

Journal ArticleDOI
TL;DR: A gedanken experiment is discussed allowing us to assess the presence of a hydrodynamic regime in any bulk material, and Hydrodynamic heat flow characteristics are given for any temperature: heat wave propagation length, drift velocity, and Knudsen number.
Abstract: Bismuth is one of the rare materials in which second sound has been experimentally observed. Our exact calculations of thermal transport with the Boltzmann equation predict the occurrence of this Poiseuille phonon flow between $\ensuremath{\approx}1.5$ and $\ensuremath{\approx}3.5\text{ }\text{ }\mathrm{K}$, in a sample size of 3.86 and 9.06 mm, consistent with the experimental observations. Hydrodynamic heat flow characteristics are given for any temperature: heat wave propagation length, drift velocity, and Knudsen number. We discuss a gedanken experiment allowing us to assess the presence of a hydrodynamic regime in any bulk material.

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations