scispace - formally typeset
Search or ask a question
Author

Francesco Mauri

Bio: Francesco Mauri is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Graphene & Phonon. The author has an hindex of 85, co-authored 352 publications receiving 69332 citations. Previous affiliations of Francesco Mauri include University of Texas at Arlington & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: The signature of 3- and 4-membered rings in the Raman spectra of several polymorphs of SiO2, including a zeolite having 102 atoms per unit cell is studied.
Abstract: We present an approach for the efficient calculation of vibrational Raman intensities in periodic systems within density functional theory. The Raman intensities are computed from the second order derivative of the electronic density matrix with respect to a uniform electric field. In contrast to previous approaches, the computational effort required by our method for the evaluation of the intensities is negligible compared to that required for the calculation of vibrational frequencies. As a first application, we study the signature of 3- and 4-membered rings in the Raman spectra of several polymorphs of SiO2, including a zeolite (H-ZSM-18) having 102 atoms per unit cell.

314 citations

Journal ArticleDOI
TL;DR: In this paper, the electron-phonon coupling (EPC) is the major source of broadening for the Raman $G$ and ${G}^{\ensuremath{-}}$ peaks in graphite and metallic nanotubes.
Abstract: We show that electron-phonon coupling (EPC) is the major source of broadening for the Raman $G$ and ${G}^{\ensuremath{-}}$ peaks in graphite and metallic nanotubes. This allows us to directly measure the optical-phonon EPCs from the $G$ and ${G}^{\ensuremath{-}}$ linewidths. The experimental EPCs compare extremely well with those from the density functional theory. We show that the EPC explains the difference in the Raman spectra of metallic and semiconducting nanotubes and their dependence on tube diameter. We dismiss the common assignment of the ${G}^{\ensuremath{-}}$ peak in metallic nanotubes to a resonance between phonons and plasmons and we attribute it to a resonance between phonons and electron-hole pairs. For metallic tubes, we assign the ${G}^{+}$ and ${G}^{\ensuremath{-}}$ peaks to TO (circumferential) and LO (axial) modes, the opposite of what is commonly done in literature.

304 citations

Journal ArticleDOI
TL;DR: The incorporation of Mg in hydroxyapatite (HA) was investigated using multinuclear solid state NMR, X-ray absorption spectroscopy (XAS) and computational modeling, finding that the environment of the anions is disordered in this substituted apatite phase.

293 citations

Journal ArticleDOI
TL;DR: In this paper, a pseudopotential scheme for calculating X-ray absorption near-edge structure (XANES) spectra is presented. But the method is applied to the carbon K edge in diamond and to the silicon and oxygen K edges in $\ensuremath{\alpha}$-quartz for which polarized XANES spectra were measured.
Abstract: We present a reciprocal-space pseudopotential scheme for calculating x-ray absorption near-edge structure (XANES) spectra. The scheme incorporates a recursive method to compute absorption cross section as a continued fraction. The continued fraction formulation of absorption is advantageous in that it permits the treatment of core-hole interaction through large supercells (hundreds of atoms). The method is compared with recently developed Bethe-Salpeter approach. The method is applied to the carbon K edge in diamond and to the silicon and oxygen K edges in $\ensuremath{\alpha}$-quartz for which polarized XANES spectra were measured. Core-hole effects are investigated by varying the size of the supercell, thus leading to information similar to that obtained from cluster size analysis usually performed within multiple scattering calculations.

292 citations

Journal ArticleDOI
TL;DR: In this paper, a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity at any temperature in the nonperturbative regime is presented.
Abstract: Harmonic calculations based on density-functional theory are generally the method of choice for the description of phonon spectra of metals and insulators. The inclusion of anharmonic effects is, however, delicate as it relies on perturbation theory requiring a considerable amount of computer time, fast increasing with the cell size. Furthermore, perturbation theory breaks down when the harmonic solution is dynamically unstable or the anharmonic correction of the phonon energies is larger than the harmonic frequencies themselves. We present here a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity at any temperature in the nonperturbative regime. The method is based on the minimization of the free energy with respect to a trial density matrix described by an arbitrary harmonic Hamiltonian. The minimization is performed with respect to all the free parameters in the trial harmonic Hamiltonian, namely, equilibrium positions, phonon frequencies, and polarization vectors. The gradient of the free energy is calculated following a stochastic procedure. The method can be used to calculate thermodynamic properties, dynamical properties, and even anharmonic corrections to the Eliashberg function of the electron-phonon coupling. The scaling with the system size is greatly improved with respect to perturbation theory. The validity of the method is demonstrated in the strongly anharmonic palladium and platinum hydrides. In both cases, we predict a strong anharmonic correction to the harmonic phonon spectra, far beyond the perturbative limit. In palladium hydrides, we calculate thermodynamic properties beyond the quasiharmonic approximation, while in PtH, we demonstrate that the high superconducting critical temperatures at 100 GPa predicted in previous calculations based on the harmonic approximation are strongly suppressed when anharmonic effects are included.

269 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations