scispace - formally typeset
Search or ask a question
Author

Francesco Mauri

Bio: Francesco Mauri is an academic researcher from Sapienza University of Rome. The author has contributed to research in topics: Graphene & Phonon. The author has an hindex of 85, co-authored 352 publications receiving 69332 citations. Previous affiliations of Francesco Mauri include University of Texas at Arlington & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the effect of screening on the electron-phonon interaction and on the phonon frequencies in doped semiconductors was studied, taking into account the screening in the presence of free carriers at finite temperature.
Abstract: We study the effect of doping on the electron-phonon interaction and on the phonon frequencies in doped semiconductors, taking into account the screening in the presence of free carriers at finite temperature. We study the impact of screening on the Fröhlich-like vertex and on the long-range components of the dynamical matrix, going beyond the state-of-the-art description for undoped crystals, thanks to the development of a computational method based on maximally localized Wannier functions. We apply our approach to cubic silicon carbide, where in the presence of doping the Fröhlich coupling and the longitudinal-transverse phonon splitting are strongly reduced, thereby influencing observable properties such as the electronic lifetime.

4 citations

Posted Content
TL;DR: In this article, Raman spectroscopy can be used as an accurate measure of the doping of both metallic and semiconducting nanotubes, which can be quantitatively explained using ab-initio calculations that take into account effects beyond the adiabatic approximation.
Abstract: In-situ Raman experiments together with transport measurements have been carried out on carbon nanotubes as a function of gate voltage In metallic tubes, a large increase in the Raman frequency of the $G^-$ band, accompanied by a substantial decrease of its line-width, is observed with electron or hole doping In addition, we see an increase in Raman frequency of the $G^+$ band in semiconducting tubes These results are quantitatively explained using ab-initio calculations that take into account effects beyond the adiabatic approximation Our results imply that Raman spectroscopy can be used as an accurate measure of the doping of both metallic and semiconducting nanotubes

4 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the magnetic and superconducting properties of electron-doped HfNCl and showed that the spin susceptibility is strongly enhanced in the low-doping regime by the electron-electron interaction.
Abstract: We investigate the magnetic and superconducting properties in electron-doped ${\mathrm{Li}}_{x}\mathrm{HfNCl}$. HfNCl is a band insulator that undergoes an insulator to superconductor transition upon doping at $x\ensuremath{\approx}0.13$. The persistence of the insulating state for $xl0.13$ is due to an Anderson transition probably related to Li disorder. In the metallic and superconducting phase, ${\mathrm{Li}}_{x}\mathrm{HfNCl}$ is a prototype two-dimensional two-valley electron gas with parabolic bands. By performing a model random phase approximation approach as well as first-principles range-separated Heyd-Scuseria-Ernzerhof (HSE06) calculations, we find that the spin susceptibility ${\ensuremath{\chi}}_{s}$ is strongly enhanced in the low-doping regime by the electron-electron interaction. Furthermore, in the low-doping limit, the exchange interaction renormalizes the intervalley electron-phonon coupling and results in a strong increase of the superconducting critical temperature for $xl0.15$. On the contrary, for $xg0.15, {T}_{c}$ is approximately constant, in agreement with experiments. At $x=0.055$ we found that ${T}_{c}$ can be as large as 40 K, suggesting that the synthesis of cleaner samples of ${\mathrm{Li}}_{x}\mathrm{HfNCl}$ could remove the Anderson insulating state competing with superconductivity and generate a high-${T}_{c}$ superconductor.

4 citations

Journal ArticleDOI
TL;DR: In this paper , the phase diagram of hydrogen and deuterium at low temperatures and high pressure was presented by accounting for highly accurate electronic and nuclear enthalpies, and the interplay between electron correlation and nuclear quantum effects makes our understanding of elemental hydrogen a formidable challenge.
Abstract: The interplay between electron correlation and nuclear quantum effects makes our understanding of elemental hydrogen a formidable challenge. Here, we present the phase diagram of hydrogen and deuterium at low temperatures and high-pressure ($P > 300$ GPa by accounting for highly accurate electronic and nuclear enthalpies. We evaluated internal electronic energies by diffusion quantum Monte Carlo, while nuclear quantum motion and anharmonicity have been included by the stochastic self-consistent harmonic approximation. Our results show that the long-sought atomic metallic hydrogen, predicted to host room-temperature superconductivity, forms at $577\pm 10$ GPa ($640\pm 14$ GPa in deuterium). Indeed, anharmonicity pushes the stability of this phase towards pressures much larger than previous theoretical estimates or attained experimental values. Before atomization, molecular hydrogen transforms from a conductive phase III to another metallic structure that is still molecular (phase VI) at $422\pm 40$ GPa ($442\pm30$ GPa in deuterium). We predict clear-cut signatures in optical spectroscopy and DC conductivity that can be used experimentally to distinguish between the two structural transitions. According to our findings, the experimental evidence of metallic hydrogen has so far been limited to molecular phases.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations