scispace - formally typeset
Search or ask a question
Author

Francesco Poletti

Bio: Francesco Poletti is an academic researcher from University of Southampton. The author has contributed to research in topics: Optical fiber & Photonic-crystal fiber. The author has an hindex of 42, co-authored 358 publications receiving 6471 citations. Previous affiliations of Francesco Poletti include Centre national de la recherche scientifique & University of Parma.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel hollow core fiber design based on nested and non-touching antiresonant tube elements arranged around a central core is proposed and it is demonstrated through numerical simulations that such a design can achieve considerably lower loss than other state-of-the-art hollow fibers.
Abstract: We propose a novel hollow core fiber design based on nested and non-touching antiresonant tube elements arranged around a central core. We demonstrate through numerical simulations that such a design can achieve considerably lower loss than other state-of-the-art hollow fibers. By adding additional pairs of coherently reflecting surfaces without introducing nodes, the Hollow Core Nested Antiresonant Nodeless Fiber (HC-NANF) can achieve values of confinement loss similar or lower than that of its already low surface scattering loss, while maintaining multiple and octave-wide antiresonant windows of operation. As a result, the HC-NANF can in principle reach a total value of loss – including leakage, surface scattering and bend contributions – that is lower than that of conventional solid fibers. Besides, through resonant out-coupling of high order modes they can be made to behave as effectively single mode fibers.

432 citations

Journal ArticleDOI
TL;DR: In this article, an extended version of the generalized nonlinear Schrodinger equation is presented and discussed for multimode optical fibers and waveguides including polarization effects, high-order dispersion, Kerr and Raman nonlinearities, self-steepening effects, as well as wavelength-dependent mode coupling and nonlinear coefficients.
Abstract: The guided, single-mode propagation of ultrashort optical pulses is commonly described by a well studied and understood generalized nonlinear Schrodinger equation. Here we present and discuss an extended version for multimode optical fibers and waveguides including polarization effects, high-order dispersion, Kerr and Raman nonlinearities, self-steepening effects, as well as wavelength-dependent mode coupling and nonlinear coefficients. We then investigate the symmetry properties of the nonlinear coupling coefficients for the cases of step-index and circularly symmetric conventional fibers and for microstructured fibers with hexagonal symmetry. Finally, we study the computational complexity of the proposed algorithm.

374 citations

Journal ArticleDOI
TL;DR: In this article, a hollow-core photonic-bandgap fiber was used to achieve a record combination of low loss (3.5 dB km-1) and wide bandwidth (160 nm), and use it to transmit 373 x 40 Gbit s-1 channels at a 1.54 ms km 1 faster speed than in a conventional fiber.
Abstract: Wide-bandwidth signal transmission with low latency is emerging as a key requirement in a number of applications, including the development of future exaflop-scale supercomputers, financial algorithmic trading and cloud computing. Optical fibres provide unsurpassed transmission bandwidth, but light propagates 31% slower in a silica glass fibre than in vacuum, thus compromising latency. Air guidance in hollow-core fibres can reduce fibre latency very significantly. However, state-of-the-art technology cannot achieve the combined values of loss, bandwidth and mode-coupling characteristics required for high-capacity data transmission. Here, we report a fundamentally improved hollow-core photonic-bandgap fibre that provides a record combination of low loss (3.5 dB km-1) and wide bandwidth (160 nm), and use it to transmit 373 x 40 Gbit s-1 channels at a 1.54 ms km-1 faster speed than in a conventional fibre. This represents the first experimental demonstration of fibre-based wavelength division multiplexed data transmission at close to (99.7%) the speed of light in vacuum

293 citations

Journal ArticleDOI
TL;DR: The sensitivity of the total dispersion to small variations from the optimal value of specific structural parameters is analyzed, and the fabrication accuracy required for the reliable fabrication of holey fibers is estimated.
Abstract: We employ a Genetic Algorithm for the dispersion optimization of a range of holey fibers (HF) with a small number of air holes but good confinement loss. We demonstrate that a dispersion of 0 ± 0.1 ps/nm/km in the wavelength range between 1.5 and 1:6 µm is achievable for HFs with a range of different transversal structures, and discuss some of the trade-offs in terms of dispersion slope, nonlinearity and confinement loss. We then analyze the sensitivity of the total dispersion to small variations from the optimal value of specific structural parameters, and estimate the fabrication accuracy required for the reliable fabrication of such fibers.

239 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of nonsilica glasses and related technology for micro-structured fiber fabrication are reviewed, and numerical simulation results are shown using the properties and performance for mid-infrared (mid-IR) supercontinuum generation when seeding with nearIR, 200-fs pump pulses.
Abstract: In this paper, the properties of nonsilica glasses and the related technology for microstructured fiber fabrication are reviewed. Numerical simulation results are shown using the properties of nonsilica microstructured fibers for mid-infrared (mid-IR) supercontinuum generation when seeding with near-IR, 200-fs pump pulses. In particular, bismuth glass small-core fibers that have two zero-dispersion wavelengths (ZDWs) are investigated, and efficient mid-IR generation is enabled by phase-matching of a 2.0-mum seed across the upper ZDW into the 3-4.5 mum wavelength range. Fiber lengths considered were 40 mm. Simulation results for a range of nonsilica large-mode fibers are also shown for comparison.

218 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: The description and discussion of the major applications of hybrid inorganic-organic (or biologic) materials are the major topic of this critical review.
Abstract: Today cross-cutting approaches, where molecular engineering and clever processing are synergistically coupled, allow the chemist to tailor complex hybrid systems of various shapes with perfect mastery at different size scales, composition, functionality, and morphology. Hybrid materials with organic–inorganic or bio–inorganic character represent not only a new field of basic research but also, via their remarkable new properties and multifunctional nature, hybrids offer prospects for many new applications in extremely diverse fields. The description and discussion of the major applications of hybrid inorganic–organic (or biologic) materials are the major topic of this critical review. Indeed, today the very large set of accessible hybrid materials span a wide spectrum of properties which yield the emergence of innovative industrial applications in various domains such as optics, micro-electronics, transportation, health, energy, housing, and the environment among others (526 references).

1,159 citations

Journal ArticleDOI
TL;DR: In this paper, essential components and operation regimes of ultrafast fiber laser systems are reviewed, as well as their use in various applications, including industrial, medical and purely scientific applications.
Abstract: Ultrafast fibre lasers are an important optical system with industrial, medical and purely scientific applications. Essential components and the operation regimes of ultrafast fibre laser systems are reviewed, as are their use in various applications.

791 citations