scispace - formally typeset
Search or ask a question
Author

Francesco Regoli

Other affiliations: University of Pisa
Bio: Francesco Regoli is an academic researcher from Marche Polytechnic University. The author has contributed to research in topics: Mytilus & Glutathione reductase. The author has an hindex of 63, co-authored 229 publications receiving 14109 citations. Previous affiliations of Francesco Regoli include University of Pisa.


Papers
More filters
Journal ArticleDOI
TL;DR: The study provided the evidence that microplastics adsorb PAHs, emphasizing an elevated bioavailability of these chemicals after the ingestion, and the toxicological implications due to responsiveness of several molecular and cellular pathways to microplastic.

919 citations

Journal ArticleDOI
TL;DR: Investigations on temporal trends, geographical distribution and global cycle of plastics have management implications when defining the origin, possible drifting tracks and ecological consequences of such pollution, and the fate and impact of microplastics in the marine environment are still far to be fully clarified.

789 citations

Journal ArticleDOI
TL;DR: Caution should be taken in monitoring studies where mRNA levels of antioxidants could represent a snapshot of cell activity at a given time, not an effective endpoint of environmental pollutants, and conflicting results between molecular and biochemical responses are quite frequent.

640 citations

Journal ArticleDOI
TL;DR: In this article, the effects of exposure to metals under and laboratory conditions were investigated in the Mediterranean mussel Mytilus galloprovincialis, including the concentrations of heavy metals, the level of glutathione, and the activity of several enzymes selected among glutathion-dependent oxidoreductases and hydrolases.

611 citations

Journal ArticleDOI
TL;DR: The overall results confirmed the newly developed method as a reliable approach to detect and quantify microplastics in the marine biota.

529 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This analysis suggests that the total phenols assay by FCR be used to quantify an antioxidant's reducing capacity and the ORAC assay to quantify peroxyl radical scavenging capacity, to comprehensively study different aspects of antioxidants.
Abstract: This review summarizes the multifaceted aspects of antioxidants and the basic kinetic models of inhibited autoxidation and analyzes the chemical principles of antioxidant capacity assays. Depending upon the reactions involved, these assays can roughly be classified into two types: assays based on hydrogen atom transfer (HAT) reactions and assays based on electron transfer (ET). The majority of HAT-based assays apply a competitive reaction scheme, in which antioxidant and substrate compete for thermally generated peroxyl radicals through the decomposition of azo compounds. These assays include inhibition of induced low-density lipoprotein autoxidation, oxygen radical absorbance capacity (ORAC), total radical trapping antioxidant parameter (TRAP), and crocin bleaching assays. ET-based assays measure the capacity of an antioxidant in the reduction of an oxidant, which changes color when reduced. The degree of color change is correlated with the sample's antioxidant concentrations. ET-based assays include th...

5,354 citations

Journal ArticleDOI
TL;DR: Methods available for the measurement of antioxidant capacity are reviewed, presenting the general chemistry underlying the assays, the types of molecules detected, and the most important advantages and shortcomings of each method.
Abstract: Methods available for the measurement of antioxidant capacity are reviewed, presenting the general chemistry underlying the assays, the types of molecules detected, and the most important advantages and shortcomings of each method. This overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceutical, and dietary supplement industries. From evaluation of data presented at the First International Congress on Antioxidant Methods in 2004 and in the literature, as well as consideration of potential end uses of antioxidants, it is proposed that procedures and applications for three assays be considered for standardization: the oxygen radical absorbance capacity (ORAC) assay, the Folin-Ciocalteu method, and possibly the Trolox equivalent antioxidant capacity (TEAC) assay. ORAC represent a hydrogen atom transfer (HAT) reaction mechanism, which is most relevant to human biology. The Folin-Ciocalteu method is an electron transfer (ET) based assay and gives reducing capacity, which has normally been expressed as phenolic contents. The TEAC assay represents a second ET-based method. Other assays may need to be considered in the future as more is learned about some of the other radical sources and their importance to human biology.

4,580 citations

Journal ArticleDOI
TL;DR: There is little doubt that measurements of bioaccumulation and biomarker responses in fish from contaminated sites offer great promises for providing information that can contribute to environmental monitoring programs designed for various aspects of ERA.

4,397 citations

Journal ArticleDOI
TL;DR: Thermal processing enhanced the nutritional value of tomatoes by increasing the bioaccessible lycopene content and total antioxidant activity and are against the notion that processed fruits and vegetables have lower nutritional value than fresh produce.
Abstract: Processed fruits and vegetables have been long considered to have lower nutritional value than their fresh commodities due to the loss of vitamin C during processing This research group found vitamin C in apples contributed < 04% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C Here it is shown that thermal processing elevated total antioxidant activity and bioaccessible lycopene content in tomatoes and produced no significant changes in the total phenolics and total flavonoids content, although loss of vitamin C was observed The raw tomato had 076 +/- 003 micromol of vitamin C/g of tomato After 2, 15, and 30 min of heating at 88 degrees C, the vitamin C content significantly dropped to 068 +/- 002, 064 +/- 001, and 054 +/- 002 micromol of vitamin C/g of tomato, respectively (p < 001) The raw tomato had 201 +/- 004 mg of trans-lycopene/g of tomato After 2, 15, and 30 min of heating at 88 degrees C, the trans-lycopene content had increased to 311+/- 004, 545 +/- 002, and 532 +/- 005 mg of trans-lycopene/g of tomato (p < 001) The antioxidant activity of raw tomatoes was 413 +/- 036 micromol of vitamin C equiv/g of tomato With heat treatment at 88 degrees C for 2, 15, and 30 min, the total antioxidant activity significantly increased to 529 +/- 026, 553 +/- 024, and 670 +/- 025 micromol of vitamin C equiv/g of tomato, respectively (p < 001) There were no significant changes in either total phenolics or total flavonoids These findings indicate thermal processing enhanced the nutritional value of tomatoes by increasing the bioaccessible lycopene content and total antioxidant activity and are against the notion that processed fruits and vegetables have lower nutritional value than fresh produce This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risks of chronic diseases

2,738 citations