scispace - formally typeset
Search or ask a question
Author

Francine Jotereau

Bio: Francine Jotereau is an academic researcher from University of Nantes. The author has contributed to research in topics: Antigen & Cytotoxic T cell. The author has an hindex of 47, co-authored 111 publications receiving 6619 citations. Previous affiliations of Francine Jotereau include Centre national de la recherche scientifique & Ludwig Institute for Cancer Research.
Topics: Antigen, Cytotoxic T cell, T cell, Melanoma, Epitope


Papers
More filters
Journal Article
TL;DR: The results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.
Abstract: The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A27-35 (AAGIGILTV) and the Melan-A26-35 (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. In this study we introduced single amino acid substitutions in either one of the two natural peptide sequences with the aim of improving peptide binding to HLA-A*0201 and/or recognition by specific CTL. Surprisingly, analogues of the Melan-A27-35 peptide, which bound more efficiently than the natural nonapeptide to HLA-A*0201, were poorly recognized by tumor-reactive CTL. In contrast, among the Melan-A26-35 peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A26-35 peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.

519 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the whole lymphoid population of the thymus is derived from immigrant blood-borne stem cells which are chemically attracted by the endoderm of the 3rd and 4th pharyngeal pouch.
Abstract: Differences in the structure of the interphase nucleus between two species of birds, the Japanese quail (Coturnix coturnix japonica) and the chick (Gallus gallus) has been used to distinguish cells from different origins in interspecies combinations. This biological cell marking technique was applied to thymus histogenesis. Using various combinations between components of quail and chick thymic rudiments, the respective contribution of endodermal epithelium, mesenchyme, and blood-borne extrinsic elements to the histogenesis of thymus was analyzed. It was demonstrated that the whole lymphoid population of the thymus is derived from immigrant blood-borne stem cells which are chemically attracted by the endoderm of the 3rd and 4th pharyngeal pouch. The latter is determined to differentiate into thymic epithelial reticulum as soon as the 15-somite stage, and is able to attract blood stem cells even when transplanted in an heterotopic position such as the ventral body wall of the embryo. It was shown that the thymic mesenchyme originates from the neural crest mesectoderm which colonizes early the 3rd and 4th branchial arches. It participates in the formation of perivascular mesenchyme, but does not give rise to lymphocytes. From heterospecific transplantations of quail thymuses into chick embryo (and inversely) at various stages of development is appeared that the thymic rudiment becomes attractive for lymphoid stem cells at a precise stage of its evolution for each species. The attractivity period lasts about 24 h for the quail and 36 h for the chick. Then, the inflow of stem cells becomes very low until the end of the incubation period. At this time, a second wave of lymphocytoblasts invades the thymus and the primitive embryonic lymphoid population is completely renewed around the hatching time. Competent thymic stem cells are present in the blood before and after the period of physiological thymic attractivity. The identity of basophilic cells appearing in the thymus during its histogenesis and lymphoid stem cells has been demonstrated from the analysis of quail-chick chimeric thymuses.

391 citations

Journal ArticleDOI
TL;DR: The surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions.
Abstract: Inhibitors of the protease of HIV-1 have been used successfully for the treatment of HIV-1-infected patients and AIDS disease. We tested whether these protease inhibitory drugs exerted effects in addition to their antiviral activity. Here, we show in mice infected with lymphocytic choriomeningitis virus and treated with the HIV-1 protease inhibitor ritonavir a marked inhibition of antiviral cytotoxic T lymphocyte (CTL) activity and impaired major histocompatibility complex class I-restricted epitope presentation in the absence of direct effects on lymphocytic choriomeningitis virus replication. A potential molecular target was found: ritonavir selectively inhibited the chymotrypsin-like activity of the 20S proteasome. In view of the possible role of T cell-mediated immunopathology in AIDS pathogenesis, the two mechanisms of action (i.e., reduction of HIV replication and impairment of CTL responses) may complement each other beneficially. Thus, the surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions.

292 citations

Journal Article
TL;DR: A PCR-based method that determines VDJ junction size patterns in 24 human TCR V beta subfamilies was used to analyze T cells infiltrating sequential malignant melanoma biopsies for the presence of clonal expansions, which should provide a better understanding of the evolution of the T cell repertoire among tumor-infiltrating lymphocytes during the progression of the disease and as a response to immunotherapy.
Abstract: A PCR-based method that determines VDJ junction size patterns in 24 human TCR V beta subfamilies was used to analyze T cells infiltrating sequential malignant melanoma biopsies for the presence of clonal expansions. Infiltrating T cell populations were found to present clonal expansions over a more or less complex polyclonal background. Two clones from a single patient were sequenced and detected in three different tumor sites (skin biopsies), whereas only one of them was also present in peripheral blood. Biopsies from this patient did not show major repertoire changes during in vivo IL-2 treatment. In contrast, in biopsies from a second patient, the expression of all the detected V beta subfamilies was increased and a larger number of clones expanded, probably as a result of therapy. A similar evolution was found among infiltrating T cells cultured in vitro from a third patient for several weeks in the presence of IL-2, where the largely polyclonal repertoire of fresh T cells (from invaded lymph nodes) was dramatically reduced to mainly clonal expansions in all V beta subfamilies detected. The high resolution method used here enables a rapid, comprehensive, qualitative, and semiquantitative description of the T cell repertoire of heterogeneous cell populations. Its use in conjunction with a functional analysis of clones detected within these populations should provide a better understanding of the evolution of the T cell repertoire among tumor-infiltrating lymphocytes during the progression of the disease and as a response to immunotherapy.

257 citations

Journal ArticleDOI
TL;DR: The results suggest that a promoter located near the end of the relevant intron is activated in melanoma cells, resulting in the production of an mRNA coding for the antigen.
Abstract: A cytolytic T lymphocyte (CTL) clone that lyses many HLA-A2 melanomas was derived from a population of tumor-infiltrating lymphocytes of an HLA-A2 melanoma patient. The gene coding for the antigen recognized by this CTL was identified by transfection of a cDNA library. It is the gene which has been reported to code for N-acetylglucosaminyltransferase V (GnT-V). Remarkably, the antigenic peptide recognized by the CTL is encoded by a sequence located in an intron. In contrast to the fully spliced GnT-V mRNA, which was found in a wide range of normal and tumoral tissues, the mRNA containing the intron region coding for the antigen was not found at a significant level in normal tissues. This mRNA was observed to be present in about 50% of melanomas. Our results suggest that a promoter located near the end of the relevant intron is activated in melanoma cells, resulting in the production of an mRNA coding for the antigen.

248 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The structure, function, and ligand specificity of the receptors responsible for NK cell recognition are reviewed and the role of EMT inNK cell recognition is reviewed.
Abstract: The integrated processing of signals transduced by activating and inhibitory cell surface receptors regulates NK cell effector functions. Here, I review the structure, function, and ligand specificity of the receptors responsible for NK cell recognition.

2,724 citations

Journal ArticleDOI
24 Jun 2010-Nature
TL;DR: It is found that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role, and this analysis extended to other cancer-related genes that possess pseudogenes, and revealed a non-coding function for mRNAs.
Abstract: The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.

2,107 citations

Journal ArticleDOI
TL;DR: Induction of the B7-H1/PD-1 pathway may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity and may explain how melanomas escape immune destruction despite endogenous antitUMor immune responses.
Abstract: In the movie The Great Escape , “problem” prisoners with multiple escape attempts are put in an “escape-proof” POW camp, where they use their cleverness and specialized skills to outwit their captors. However, when it comes to escaping, even Steve McQueen doesn’t have anything on cancer cells. Although human cancers express tumor antigens recognized by the immune system, host immune responses often fail to control tumor growth. Taube et al. now explain one way in which tumor cells may adapt to escape from immune surveillance. The researchers found a strong association between expression of the immune-inhibitory molecule B7-H1 (PD-L1) on melanocytes and immune cell infiltration into tumors in patients with different stages of melanoma. The B7-H1+ melanocytes were found directly adjacent to the immune cells, with interferon-γ detected at the melanocyte–immune cell interface. Interferon-γ, which is secreted by the immune cells, induces B7-H1 expression; thus, the tumor may adapt by causing immune cells to trigger their own inhibition. Indeed, patients with B7-H1+ metastatic melanoma had prolonged overall survival when compared with B7-H1− metastatic melanoma patients, perhaps suggesting that B7-H1 expression by the tumors is stimulated by a more successful immune response. It remains to be seen whether blocking B7-H1 in these patients will further improve survival. But it is clear that for both prisoners and tumors, adaptation is the key to escape.

1,924 citations

Journal ArticleDOI
TL;DR: Current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer are discussed.
Abstract: The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.

1,806 citations

Journal ArticleDOI
TL;DR: CT antigens are being evaluated for their role in oncogenesis — recapitulation of portions of the germline gene-expression programme might contribute characteristic features to the neoplastic phenotype, including immortality, invasiveness, immune evasion, hypomethylation and metastatic capacity.
Abstract: Cancer/testis (CT) antigens, of which more than 40 have now been identified, are encoded by genes that are normally expressed only in the human germ line, but are also expressed in various tumour types, including melanoma, and carcinomas of the bladder, lung and liver These immunogenic proteins are being vigorously pursued as targets for therapeutic cancer vaccines CT antigens are also being evaluated for their role in oncogenesis — recapitulation of portions of the germline gene-expression programme might contribute characteristic features to the neoplastic phenotype, including immortality, invasiveness, immune evasion, hypomethylation and metastatic capacity

1,491 citations