scispace - formally typeset
Search or ask a question
Author

Francis Delannay

Bio: Francis Delannay is an academic researcher from Université catholique de Louvain. The author has contributed to research in topics: Fracture toughness & Creep. The author has an hindex of 39, co-authored 205 publications receiving 6042 citations. Previous affiliations of Francis Delannay include Catholic University of Leuven & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the literature concerning the preparation of metal-matrix composites by liquid metal infiltration techniques is presented, with particular emphasis on reinforcements made of graphite, alumina or silicon carbide multifilament fibres.
Abstract: This review aims at making a bridge between the fundamentals of the wetting of solids by liquid metals and the practice of the preparation of metal-matrix composites. One recalls first the significance of concepts such as surface tension, work of adhesion, adsorption and the relation between these concepts, the phenomenon of wetting and the process of liquid metal infiltration. Thereafter, the wetting of various types of solids is considered: metals, oxides, carbon and carbides. !n the !light of this body of science, one proposes finally a critical evaluation of the literature concerning the preparation of metal-matrix composites by liquid metal infiltration techniques. Particular emphasis is devoted to reinforcements made of graphite, alumina or silicon carbide multifilament fibres; the use of coatings and the addition of alloying elements to the metal are successively discussed.

513 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the variation of the volume fraction of untransformed retained austenite as a function of uniaxial plastic strain and found that the increase of the mechanical stability of retained Austenite is not solely related to the decrease of the M s temperature induced by carbon enrichment.
Abstract: The mechanical stability of dispersed retained austenite, i.e., the resistance of this austenite to mechanically induced martensitic transformation, was characterized at room temperature on two steels which differed by their silicon content. The steels had been heat treated in such a way that each specimen presented the same initial volume fraction of austenite and the same austenite grain size. Nevertheless, depending on the specimen, the retained austenite contained different amounts of carbon and was surrounded by different phases. Measurements of the variation of the volume fraction of untransformed austenite as a function of uniaxial plastic strain revealed that, besides the carbon content of retained austenite, the strength of the other phases surrounding austenite grains also influences the austenite resistance to martensitic transformation. The presence of thermal martensite together with the silicon solid-solution strengthening of the intercritical ferrite matrix can “shield” austenite from the externally applied load. As a consequence, the increase of the mechanical stability of retained austenite is not solely related to the decrease of the M s temperature induced by carbon enrichment.

347 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanical behavior of transformation-induced plasticity (TRIP)-assisted multiphase steels is addressed based on three different microstructures generated from the same steel grade.

305 citations

Book
01 Jan 1984

277 citations

Journal ArticleDOI
TL;DR: In this paper, the role of silicon and aluminium additions on the retention of carbon-enriched austenite by partial bainite transformation and on the mechanical properties is enlightened, and a strong influence of the solid-solution strengthening effect of silicon is highlighted.
Abstract: The influence of heat-treating conditions on the retention of carbon-enriched austenite of TRIP-assisted multiphase steel grades containing different amounts of silicon and/or aluminium is investigated. The ensuing mechanical properties resulting from the TRIP effect are also scrutinised. The bainite transformation kinetics was followed by dilatometry whereas a detailed characterisation of the microstructures led to the construction of transformation maps giving the volume fractions of the different phases and the carbon content of austenite. The role of silicon and aluminium additions (i) on the retention of austenite by partial bainite transformation and (ii) on the mechanical properties is enlightened. A strong influence of the solid-solution strengthening effect of silicon is highlighted. Aluminium seems to be an effective alloying element for the retention of austenite in TRIP-aided steels even if lower strength levels can be attained. A mixed Al-Si TRIP-aided steel seems to be a very good compromise between the processing needs, the required mechanical properties and the industrial constraints.

211 citations


Cited by
More filters
Book ChapterDOI
TL;DR: In this article, the authors describe the mixed mode cracking in layered materials and elaborates some of the basic results on the characterization of crack tip fields and on the specification of interface toughness, showing that cracks in brittle, isotropic, homogeneous materials propagate such that pure mode I conditions are maintained at the crack tip.
Abstract: Publisher Summary This chapter describes the mixed mode cracking in layered materials. There is ample experimental evidence that cracks in brittle, isotropic, homogeneous materials propagate such that pure mode I conditions are maintained at the crack tip. An unloaded crack subsequently subject to a combination of modes I and II will initiate growth by kinking in such a direction that the advancing tip is in mode I. The chapter also elaborates some of the basic results on the characterization of crack tip fields and on the specification of interface toughness. The competition between crack advance within the interface and kinking out of the interface depends on the relative toughness of the interface to that of the adjoining material. The interface stress intensity factors play precisely the same role as their counterparts in elastic fracture mechanics for homogeneous, isotropic solids. When an interface between a bimaterial system is actually a very thin layer of a third phase, the details of the cracking morphology in the thin interface layer can also play a role in determining the mixed mode toughness. The elasticity solutions for cracks in multilayers are also elaborated.

3,828 citations

Journal ArticleDOI
TL;DR: The functional requirements, and types, of materials used in developing state of the art of scaffolds for tissue engineering applications are described and where future research and direction is required are described.

2,648 citations

Journal ArticleDOI
TL;DR: In this article, the current status of particle reinforced metal matrix composites is reviewed and the different types of reinforcement being used, together with the alternative processing methods, are discussed, and different factors have to be taken into consideration to produce a high quality billet.
Abstract: Particle reinforced metal matrix composites are now being produced commerically, and in this paper the current status of these materials is reviewed. The different types of reinforcement being used, together with the alternative processing methods, are discussed. Depending on the initial processing method, different factors have to be taken into consideration to produce a high quality billet. With powder metallurgy processing, the composition of the matrix and the type of reinforcement are independent of one another. However, in molten metal processing they are intimately linked in terms of the different reactivities which occur between reinforcement and matrix in the molten state. The factors controlling the distribution of reinforcement are also dependent on the initial processing method. Secondary fabrication methods, such as extrusion and rolling, are essential in processing composites produced by powder metallurgy, since they are required to consolidate the composite fully. Other methods, suc...

1,961 citations

Journal ArticleDOI
TL;DR: A review of the past, present, and future of the hydroxyapatite (HAp)-based biomaterials from the point of view of preparation of hard tissue replacement implants is presented in this paper.
Abstract: This paper reviews the past, present, and future of the hydroxyapatite (HAp)-based biomaterials from the point of view of preparation of hard tissue replacement implants. Properties of the hard tissues are also described. The mechanical reliability of the pure HAp ceramics is low, therefore it cannot be used as artificial teeth or bones. For these reasons, various HAp-based composites have been fabricated, but only the HAp-coated titanium alloys have found wide application. Among the others, the microstructurally controlled HAp ceramics such as fibers/whiskers-reinforced HAp, fibrous HAp-reinforced polymers, or biomimetically fabricated HAp/collagen composites seem to be the most suitable ceramic materials for the future hard tissue replacement implants.

1,892 citations