scispace - formally typeset
Search or ask a question
Author

Francis M. Jiggins

Bio: Francis M. Jiggins is an academic researcher from University of Cambridge. The author has contributed to research in topics: Wolbachia & Population. The author has an hindex of 58, co-authored 149 publications receiving 11442 citations. Previous affiliations of Francis M. Jiggins include University of Edinburgh & University College London.


Papers
More filters
Journal ArticleDOI
Kanchon K. Dasmahapatra1, James R. Walters2, Adriana D. Briscoe3, John W. Davey, Annabel Whibley, Nicola J. Nadeau2, Aleksey V. Zimin4, Daniel S.T. Hughes5, Laura Ferguson5, Simon H. Martin2, Camilo Salazar2, Camilo Salazar6, James J. Lewis3, Sebastian Adler7, Seung-Joon Ahn8, Dean A. Baker9, Simon W. Baxter2, Nicola Chamberlain10, Ritika Chauhan11, Brian A. Counterman12, Tamas Dalmay11, Lawrence E. Gilbert13, Karl H.J. Gordon14, David G. Heckel8, Heather M. Hines5, Katharina J. Hoff7, Peter W. H. Holland5, Emmanuelle Jacquin-Joly15, Francis M. Jiggins, Robert T. Jones, Durrell D. Kapan16, Durrell D. Kapan17, Paul J. Kersey, Gerardo Lamas, Daniel Lawson, Daniel Mapleson11, Luana S. Maroja18, Arnaud Martin3, Simon Moxon19, William J. Palmer2, Riccardo Papa20, Alexie Papanicolaou14, Yannick Pauchet8, David A. Ray12, Neil Rosser1, Steven L. Salzberg21, Megan A. Supple22, Alison K. Surridge2, Ayşe Tenger-Trolander10, Heiko Vogel8, Paul A. Wilkinson23, Derek Wilson, James A. Yorke4, Furong Yuan3, Alexi Balmuth24, Cathlene Eland, Karim Gharbi, Marian Thomson, Richard A. Gibbs25, Yi Han25, Joy Jayaseelan25, Christie Kovar25, Tittu Mathew25, Donna M. Muzny25, Fiona Ongeri25, Ling-Ling Pu25, Jiaxin Qu25, Rebecca Thornton25, Kim C. Worley25, Yuanqing Wu25, Mauricio Linares26, Mark Blaxter, Richard H. ffrench-Constant27, Mathieu Joron, Marcus R. Kronforst10, Sean P. Mullen28, Robert D. Reed3, Steven E. Scherer25, Stephen Richards25, James Mallet10, James Mallet1, W. Owen McMillan, Chris D. Jiggins2, Chris D. Jiggins6 
05 Jul 2012-Nature
TL;DR: It is inferred that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.
Abstract: Sequencing of the genome of the butterfly Heliconius melpomene shows that closely related Heliconius species exchange protective colour-pattern genes promiscuously.

1,103 citations

Journal ArticleDOI
TL;DR: It is concluded that these elements often confound the inference of an organism's evolutionary history from mtDNA data and that mtDNA on its own is an unsuitable marker for the study of recent historical events in arthropods.
Abstract: Mitochondrial DNA (mtDNA) has been a marker of choice for reconstructing historical patterns of population demography, admixture, biogeography and speciation. However, it has recently been suggested that the pervasive nature of direct and indirect selection on this molecule renders any conclusion derived from it ambiguous. We review here the evidence for indirect selection on mtDNA in arthropods arising from linkage disequilibrium with maternally inherited symbionts. We note first that these symbionts are very common in arthropods and then review studies that reveal the extent to which they shape mtDNA evolution. mtDNA diversity patterns are compatible with neutral expectations for an uninfected population in only 2 of 19 cases. The remaining 17 studies revealed cases of symbiont-driven reduction in mtDNA diversity, symbiont-driven increases in diversity, symbiont-driven changes in mtDNA variation over space and symbiont-associated paraphyly of mtDNA. We therefore conclude that these elements often confound the inference of an organism's evolutionary history from mtDNA data and that mtDNA on its own is an unsuitable marker for the study of recent historical events in arthropods. We also discuss the impact of these studies on the current programme of taxonomy based on DNA bar-coding.

788 citations

Journal ArticleDOI
TL;DR: It is found that antiviralRNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites.
Abstract: RNA interference (RNAi) is an important defence against viruses and transposable elements (TEs). RNAi not only protects against viruses by degrading viral RNA, but hosts and viruses can also use RNAi to manipulate each other's gene expression, and hosts can encode microRNAs that target viral sequences. In response, viruses have evolved a myriad of adaptations to suppress and evade RNAi. RNAi can also protect cells against TEs, both by degrading TE transcripts and by preventing TE expression through heterochromatin formation. The aim of our review is to summarize and evaluate the current data on the evolution of these RNAi defence mechanisms. To this end, we also extend a previous analysis of the evolution of genes of the RNAi pathways. Strikingly, we find that antiviral RNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites. Over longer time scales, key RNAi genes are repeatedly duplicated or lost across the metazoan phylogeny, with important implications for RNAi as an immune defence.

486 citations

Journal ArticleDOI
TL;DR: Observations reinforce the notion that Wolbachia may be an important agent driving arthropod evolution, and corroborates previous suggestions that male–killing behaviour is easily evolved by invertebrate symbionts.
Abstract: The inherited bacterium Wolbachia spreads through the manipulation of host reproduction, and has been suggested to be an important factor in arthropod evolution, from host speciation to the evoluti...

396 citations

Journal ArticleDOI
TL;DR: It is shown that Rickettsia are primarily arthropod-associated bacteria, and several novel groups within the genus are identified, and multi-gene analysis indicates that different parts of the genome tend to share the same phylogeny.
Abstract: Rickettsia are intracellular symbionts of eukaryotes that are best known for infecting and causing serious diseases in humans and other mammals. All known vertebrate-associated Rickettsia are vectored by arthropods as part of their life-cycle, and many other Rickettsia are found exclusively in arthropods with no known secondary host. However, little is known about the biology of these latter strains. Here, we have identified 20 new strains of Rickettsia from arthropods, and constructed a multi-gene phylogeny of the entire genus which includes these new strains. We show that Rickettsia are primarily arthropod-associated bacteria, and identify several novel groups within the genus. Rickettsia do not co-speciate with their hosts but host shifts most often occur between related arthropods. Rickettsia have evolved adaptations including transmission through vertebrates and killing males in some arthropod hosts. We uncovered one case of horizontal gene transfer among Rickettsia, where a strain is a chimera from two distantly related groups, but multi-gene analysis indicates that different parts of the genome tend to share the same phylogeny. Approximately 150 million years ago, Rickettsia split into two main clades, one of which primarily infects arthropods, and the other infects a diverse range of protists, other eukaryotes and arthropods. There was then a rapid radiation about 50 million years ago, which coincided with the evolution of life history adaptations in a few branches of the phylogeny. Even though Rickettsia are thought to be primarily transmitted vertically, host associations are short lived with frequent switching to new host lineages. Recombination throughout the genus is generally uncommon, although there is evidence of horizontal gene transfer. A better understanding of the evolution of Rickettsia will help in the future to elucidate the mechanisms of pathogenicity, transmission and virulence.

348 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations