scispace - formally typeset
Search or ask a question
Author

Francisco Ayuga

Bio: Francisco Ayuga is an academic researcher. The author has contributed to research in topics: Orbit determination & Ground track. The author has an hindex of 1, co-authored 4 publications receiving 51 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The 5 cm orbit accuracy requirement in 3D is fulfilled according to the results of the orbit comparisons between the different orbit solutions from the QWG, and an error in the given geometry information about the satellite is found.

64 citations

01 Jan 2017
TL;DR: In this paper, the results of several optica l campaigns performed by GMV and ISON together are reported, including ranging station calibration, collision avoidance, and end-of-life operations.
Abstract: This paper reports on the results of several optica l campaigns performed by GMV and ISON together. These campaigns have focused on various aspects, including ranging station calibration, collision avoidance, and end-of-life operations. Special focu s is given to a very recent end-of-life activity, devote d to the deorbiting of Meteosat-7.

1 citations

01 Apr 2016
TL;DR: In this paper, the NAPEOS (Navigation Package for Earth Orbiting Satellites) software for precise orbit determination is used to achieve the different but very demanding requirements in terms of orbital accuracy and timeliness for the Sentinel -1, -2 and -3 missions.
Abstract: The POD core of the CPOD Service is NAPEOS (Navigation Package for Earth Orbiting Satellites) the leading ESA/ESOC software for precise orbit determination. The careful selection of models and inputs is important to achieve the different but very demanding requirements in terms of orbital accuracy and timeliness for the Sentinel -1, -2 & -3 missions. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. Although the characteristics and the requirements are different for the three missions the same core POD setup is used to the largest extent possible. This strategy facilitates maintenance of the complex system of the CPOD Service.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In 2018, the 25th year of development of radar altimetry was celebrated and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences as discussed by the authors.

105 citations

Journal ArticleDOI
TL;DR: A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions.
Abstract: The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d’Etudes Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

93 citations

Journal ArticleDOI
TL;DR: It is concluded that the advanced machine learning models can be used for mapping soil salinity in the Delta areas; thus, providing a useful tool for assisting farmers and the policy maker in choosing better crop types in the context of climate change.
Abstract: Soil salinity caused by climate change associated with rising sea level is considered as one of the most severe natural hazards that has a negative effect on agricultural activities in the coastal areas in most tropical climates. This issue has become more severe and increasingly occurred in the Mekong River Delta of Vietnam. The main objective of this work is to map soil salinity intrusion in Ben Tre province located on the Mekong River Delta of Vietnam using the Sentinel-1 Synthetic Aperture Radar (SAR) C-band data combined with five state-of-the-art machine learning models, Multilayer Perceptron Neural Networks (MLP-NN), Radial Basis Function Neural Networks (RBF-NN), Gaussian Processes (GP), Support Vector Regression (SVR), and Random Forests (RF). For this purpose, 63 soil samples were collected during the field survey conducted from 4–6 April 2018 corresponding to the Sentinel-1 SAR imagery. The performance of the five models was assessed and compared using the root-mean-square error (RMSE), the mean absolute error (MAE), and the correlation coefficient (r). The results revealed that the GP model yielded the highest prediction performance (RMSE = 2.885, MAE = 1.897, and r = 0.808) and outperformed the other machine learning models. We conclude that the advanced machine learning models can be used for mapping soil salinity in the Delta areas; thus, providing a useful tool for assisting farmers and the policy maker in choosing better crop types in the context of climate change.

82 citations

Journal ArticleDOI
TL;DR: In this article, a parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets.
Abstract: Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1–3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5–10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

66 citations

Journal ArticleDOI
TL;DR: In this paper, the first 4 years of the Swarm mission have been generated from onboard GPS measurements in a systematic reprocessing using refined models and processing techniques, including macro-models for a more elaborate non-gravitational force modeling (solar radiation pressure, atmospheric drag and lift, earth albedo), as well as carrier phase ambiguity fixing.
Abstract: Precise science orbits for the first 4 years of the Swarm mission have been generated from onboard GPS measurements in a systematic reprocessing using refined models and processing techniques. Key enhancements relate to the introduction of macro-models for a more elaborate non-gravitational force modeling (solar radiation pressure, atmospheric drag and lift, earth albedo), as well as carrier phase ambiguity fixing. Validation using satellite laser ranging demonstrates a 30% improvement in the precision of the reduced dynamic orbits with resulting errors at the 0.5–1 cm level (1D RMS). A notable performance improvement is likewise achieved for the kinematic orbits, which benefit most from the ambiguity fixing and show a 50% error reduction in terms of SLR residuals while differences with respect to reduced dynamic ephemerides amount to only 1.7 cm (median of daily 3D RMS). Compared to the past kinematic science orbits based on float-ambiguity estimates, the new kinematic position solutions exhibit a factor of reduction of two to three in Allan deviation at time scales of 1000s and higher, and promise an improved recovery of low-degree and -order gravity field coefficients in Swarm gravity field analyses.

59 citations