scispace - formally typeset
Search or ask a question
Author

Francisco Contreras-de-Villar

Bio: Francisco Contreras-de-Villar is an academic researcher. The author has contributed to research in topics: Earth's magnetic field. The author has an hindex of 1, co-authored 2 publications receiving 8 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results of 72 different cases were conducted varying these factors, and the results were analyzed, and it was highlighted that the error for noon flights is almost double that for the early morning flights.
Abstract: The size and great dynamism of coastal systems require faster and more automated mapping methods like the use of a remotely piloted aircraft system (RPAS) or unmanned aerial vehicle (UAV). This method allows for shorter intervals between surveys. The main problem for surveying using low-altitude digital photogrammetry in beach areas is their visual homogeneity. Obviously, the fewer the homologous points defined by the program, the lower the accuracy. Moreover, some factors influence the error performed in photogrammetric techniques, such as flight height, flight time, percentage of frame overlap (side and forward), and the number of ground control points (GCPs). A total of 72 different cases were conducted varying these factors, and the results were analyzed. Among the conclusions, it should be highlighted that the error for noon flights is almost double that for the early morning flights. Secondly, there is no appreciable difference regarding the side overlap. But, on the other side, RMSE increased to three times (from 0.05 to 0.15 m) when forward overlap decreased from 85% to 70%. Moreover, relative accuracy is 0.05% of the flying height which means a significant increase in error (66%) between flights performed at 60 and 100 m height). Furthermore, the median of the error for noon flights (0.12 m) is almost double that for the early morning flights (0.07 m) because of the higher percentage of grids with data for early flights. Therefore, beach levelings must never be performed at noon when carried out by RPAS. Eventually, a new parameter has been considered: the relationship between the number of GCPs and the surface to be monitored. A minimum value of 7 GCP/Ha should be taken into account when designing a beach leveling campaign using RPAS.

13 citations

Journal ArticleDOI
TL;DR: In this paper, a grid of geomagnetic data was surveyed in an area close to the Island of San Andres in the north-west of the Colombian maritime territory, and the results showed negligible differences between the magnetic data obtained for the years 1970 and 2018 for all the variables measured, such as the inclination, declination, and total magnetic field.
Abstract: In recent years, the Oceanographic and Hydrographic Research Center (part of the General Maritime Directorate of Colombia (DIMAR) has made important efforts to advance research in the field of marine geophysics, in particular, the techniques of geomagnetism, sub-bottom profiling, and side-scan sonar, the first being the most developed at the present time. A method is presented for the acquisition of geomagnetic data in marine environments, as used by DIMAR in the Colombian maritime territory. The development of the geomagnetic method not only offers the opportunity to advance basic scientific knowledge, but it is also of great importance in support of national sovereignty issues. Among other applications, the most representative uses of the geomagnetic method are the location of pipelines and metal plates, detection of buried ordnance, identification of sites of archaeological interest, and the identification and characterization of geological structures. As a result of testing the method, a grid of geomagnetic data was surveyed in an area close to the Island of San Andres in the north-west of the Colombian maritime territory. The survey was prepared with a regional geometric arrangement, the result of which was compared with survey data obtained from the National Oceanic and Atmospheric Administration (NOAA) magnetic data repository and carried out in the same study area. Despite the long time interval between the two surveys, almost 50 years, no significant differences were observed in terms of the analyzed variables. Finally, results show negligible differences between the magnetic data obtained for the years 1970 and 2018 for all the variables measured, such as the inclination, declination, and total magnetic field. These differences may be attributable to a geological component or also to the acquisition and processing methods used in the 1970s.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The aim of this paper is to review the current methods and techniques used and show the different methodologies and their applications in the field and identify the advantages, disadvantages, or limitations of the current models at the local scale and propose research to find possible improvements.
Abstract: Wind forecasts are widely spread because of the growth in wind power, but also because there are other applications to consider, such as the long-term scenario forecasts regarding the effects of global warming. Overall, there have been big developments in global circulation models (GCM) that inform future scenarios at the large scale, but wind forecast at a local scale is a problem that has not totally been solved. It should be possible to estimate the winds in the near field with a certain accuracy, which is interesting for aspects such as the blowing of incident wind at wind farms, the wind on a dune in movement, or the wind blowing in a harbour. Therefore, a data-driven wind transference equation at a local scale is needed. Among the conclusions, it is worthy to state that the statistical downscaling techniques are suitable for application as a statistical inference at small scales. The aim of this paper is therefore to review the current methods and techniques used and show the different methodologies and their applications in the field. Additional targets will be to identify the advantages, disadvantages, or limitations of the current models at the local scale and propose research to find possible improvements.

10 citations

Journal ArticleDOI
23 Aug 2021-Sensors
Abstract: This paper proposes a differential filtering method for the identification of modal parameters of bridges from unmanned aerial vehicle (UAV) measurement. The determination of the modal parameters of bridges is a key issue in bridge damage detection. Accelerometers and fixed cameras have disadvantages of deployment difficulty. Hence, the actual displacement of a bridge may be obtained by using the digital image correlation (DIC) technology from the images collected by a UAV. As drone movement introduces false displacement into the collected images, the homography transformation is commonly used to achieve geometric correction of the images and obtain the true displacement of the bridge. The homography transformation is not always applicable as it is based on at least four static reference points on the plane of target points. The proposed differential filtering method does not request any reference points and will greatly accelerate the identification of the modal parameters. The displacement of the points of interest is tracked by the DIC technology, and the obtained time history curves are processed by differential filtering. The filtered signals are input into the modal analysis system, and the basic modal parameters of the bridge model are obtained by the operational modal analysis (OMA) method. In this paper, the power spectral density (PSD) is used to identify the natural frequencies; the mode shapes are determined by the ratio of the PSD transmissibility (PSDT). The identification results of three types of signals are compared: UAV measurement with differential filtering, UAV measurement with homography transformation, and accelerometer-based measurement. It is found that the natural frequencies recognized by these three methods are almost the same. This paper demonstrates the feasibility of UAV-differential filtering method in obtaining the bridge modal parameters; the problems and challenges in UAV measurement are also discussed.

6 citations

Journal ArticleDOI
11 Jun 2021-Energies
TL;DR: A new polymodal method of improving measurement image quality has been proposed that removes degrading factors from the images and, as a consequence, improves the geometric and interpretative quality of a photogrammetric product.
Abstract: Photogrammetry using unmanned aerial vehicles has become very popular and is already commonly used. The most frequent photogrammetry products are an orthoimage, digital terrain model and a 3D object model. When executing measurement flights, it may happen that there are unsuitable lighting conditions, and the flight itself is fast and not very stable. As a result, noise and blur appear on the images, and the images themselves can have too low of a resolution to satisfy the quality requirements for a photogrammetric product. In such cases, the obtained images are useless or will significantly reduce the quality of the end-product of low-level photogrammetry. A new polymodal method of improving measurement image quality has been proposed to avoid such issues. The method discussed in this article removes degrading factors from the images and, as a consequence, improves the geometric and interpretative quality of a photogrammetric product. The author analyzed 17 various image degradation cases, developed 34 models based on degraded and recovered images, and conducted an objective analysis of the quality of the recovered images and models. As evidenced, the result was a significant improvement in the interpretative quality of the images themselves and a better geometry model.

3 citations

Journal ArticleDOI
07 May 2021-Energies
TL;DR: In this paper, a survey of the seasonal variability of the TSB in 2018-2020 was conducted in three representative waterbodies of the Republic of Poland: open sea, river mouth and exit from a large port, differing between each other in seabed shape.
Abstract: The Territorial Sea Baseline (TSB) allows coastal states to define the maritime boundaries, such as: contiguous zone, continental shelf, exclusive economic zone and territorial sea. Their delimitations determine what rights (jurisdiction and sovereignty) a given coastal state is entitled to. For many years, the problem of delimiting baseline was considered in two aspects: legal (lack of clear-cut regulations and different interpretations) and measurement (lack of research tools for precise and reliable depth measurement in ultra-shallow waters). This paper aimed to define the seasonal variability of the TSB in 2018–2020. The survey was conducted in three representative waterbodies of the Republic of Poland: open sea, river mouth and exit from a large port, differing between each other in seabed shape. Baseline measurements were carried out with Unmanned Surface Vehicles (USV), equipped with Global Navigation Satellite System (GNSS) geodetic receivers and miniature Single Beam Echo Sounders (SBES). The survey has shown that the smallest seasonal variability of TSB (1.86–3.00 m) was confirmed for the waterbody located near the Vistula Śmiala River mouth, which features steep shores. On the other hand, the greatest variability in the baseline (5.73–8.37 m) as observed in the waterbody adjacent to the public beach in Gdynia. Factors conditioning considerable changes in TSB determination were: periodically performed land reclamation works in the area and the fact that the depth of the waterbody increases slowly when moving away from the coastline.

3 citations

Journal ArticleDOI
TL;DR: In this article , the accuracy of a photogrammetric survey based on UAV-DAP with ground control points (GCPs) up to the point of processing is analyzed.
Abstract: UAV-DAP (unmanned aerial vehicle-digital aerial photogrammetry) has become one of the most widely used geomatics techniques in the last decade due to its low cost and capacity to generate high-density point clouds, thus demonstrating its great potential for delivering high-precision products with a spatial resolution of centimetres. The questions is, how should it be applied to obtain the best results? This research explores different flat scenarios to analyse the accuracy of this type of survey based on photogrammetric SfM (structure from motion) technology, flight planning with ground control points (GCPs), and the combination of forward and cross strips, up to the point of processing. The RMSE (root mean square error) is analysed for each scenario to verify the quality of the results. An equation is adjusted to estimate the a priori accuracy of the photogrammetric survey with digital sensors, identifying the best option for μxyz (weight coefficients depending on the layout of both the GCP and the image network) for the four scenarios studied. The UAV flights were made in Lorca (Murcia, Spain). The study area has an extension of 80 ha, which was divided into four blocks. The GCPs and checkpoints (ChPs) were measured using dual-frequency GNSS (global navigation satellite system), with a tripod and centring system on the mark at the indicated point. The photographs were post-processed using the Agisoft Metashape Professional software (64 bits). The flights were made with two multirotor UAVs, a Phantom 3 Professional and an Inspire 2, with a Zenmuse X5S camera. We verify the influence by including additional forward and/or cross strips combined with four GCPs in the corners, plus one additional GCP in the centre, in order to obtain better photogrammetric adjustments based on the preliminary flight planning.

2 citations