scispace - formally typeset
Search or ask a question
Author

Francisco J. Lázaro

Bio: Francisco J. Lázaro is an academic researcher from University of Zaragoza. The author has contributed to research in topics: Magnetic susceptibility & Superparamagnetism. The author has an hindex of 20, co-authored 57 publications receiving 2063 citations. Previous affiliations of Francisco J. Lázaro include Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Langevin-dynamics approach was used to study the dynamics of magnetic nanoparticles, and the results were compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy.
Abstract: The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment is numerically solved (properly observing the customary interpretation of it as a Stratonovich stochastic differential equation), in order to study the dynamics of magnetic nanoparticles. The corresponding Langevin-dynamics approach allows for the study of the fluctuating trajectories of individual magnetic moments, where we have encountered remarkable phenomena in the overbarrier rotation process, such as crossing-back or multiple crossing of the potential barrier, rooted in the gyromagnetic nature of the system. Concerning averaged quantities, we study the linear dynamic response of the archetypal ensemble of noninteracting classical magnetic moments with axially symmetric magnetic anisotropy. The results are compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy. It has been found that, among a number of heuristic expressions for the linear dynamic susceptibility, only the simple formula proposed by Shliomis and Stepanov matches the coarse features of the susceptibility reasonably. By comparing the numerical results with the asymptotic formula of Storonkin {Sov. Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]}, the effects of the intra-potential-well relaxation modes on the low-temperature longitudinal dynamic response have been assessed, showing their relatively small reflection in the susceptibility curves but their dramatic influence on the phase shifts. Comparison of the numerical results with the exact zero-damping expression for the transverse susceptibility by Garanin, Ishchenko, and Panina {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fiz. 82, 242 (1990)]}, reveals a sizable contribution of the spread of the precession frequencies of the magnetic moment in the anisotropy field to the dynamic response at intermediate-to-high temperatures.

594 citations

Journal ArticleDOI
02 Sep 2010-Blood
TL;DR: This work proposes that mouse serum ferritin is secreted through the nonclassical lysosomal secretory pathway, and finds that both splenic macrophages and proximal tubule cells of the kidney are possible cellular sources for serum Ferritin.

350 citations

Journal ArticleDOI
TL;DR: IFN-γ-adsorbed DMSA-coated magnetite nanoparticles can be used as an efficient in vivo drug delivery system for tumor immunotherapy, and their combined action led to a notable reduction in tumor size.

155 citations

Journal ArticleDOI
TL;DR: The results show that DMSA-coated MNP accumulate in spleen, liver and lung tissues for extended periods of time, in which nanoparticles undergo a process of conversion from superparamagnetic iron oxide nanoparticles to other non-superparamagneticIron forms, with no significant signs of toxicity.

109 citations

Journal ArticleDOI
TL;DR: In this paper, the reduced cobalt species are proposed as the active sites for the simultaneous removal of SO2 and NOx in a FCC unit, showing that cobalt is present in two forms, as isolated and well dispersed paramagnetic ions, and as very small Co-containing particles with an internal antiferromagnetic ordering at low temperature.
Abstract: Metal containing hydrotalcites, where metal oxides present redox properties and hydrotalcite shows a basic character, appear to be new important environmental catalysts for the removal of SOx and NOx. Redox and basic properties of a mixed Co/Mg/Al oxide derived from hydrotalcites are tuned in order to achieve the optimal catalytic behavior required. This sample has been characterized showing that cobalt is present in two forms, as isolated and well dispersed paramagnetic ions, and as very small Co-containing particles (in the nanometric range), with an internal antiferromagnetic ordering at low temperature. The redox properties of cobalt allow the reduction of NO with propane at high temperatures and in presence of oxygen. The reduced cobalt species are proposed as the active sites. Nevertheless, for the removal of SO2 and contrary to the case of Cu/Mg/Al samples, the addition of an oxidant as cerium oxide on Co/Mg/Al is necessary in order to oxidize SO2 to SO3. In this case, similar results than those obtained with previously reported catalyst, i.e. cerium or copper–cerium hydrotalcite, are obtained. These results indicate that this catalyst could be an adequate material for the simultaneous removal of SO2 and NOx in a FCC unit.

107 citations


Cited by
More filters
Book ChapterDOI
TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Abstract: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other biological entities; (ii) therapeutic drug, gene and radionuclide delivery; (iii) radio frequency methods for the catabolism of tumours via hyperthermia; and (iv) contrast enhancement agents for magnetic resonance imaging applications. Future prospects are also discussed.

2,815 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.

2,232 citations

Journal ArticleDOI
TL;DR: In this paper, a classification of nanostructure morphology according to the mechanism responsible for the magnetic properties is presented, followed by a brief discussion of some promising experimental techniques in synthesis and measurements.
Abstract: Understanding the correlation between magnetic properties and nanostructure involves collaborative efforts between chemists, physicists, and materials scientists to study both fundamental properties and potential applications. This article introduces a classification of nanostructure morphology according to the mechanism responsible for the magnetic properties. The fundamental magnetic properties of interest and the theoretical frameworks developed to model these properties are summarized. Common chemical and physical techniques for the fabrication of magnetic nanostructures are surveyed, followed by some examples of recent investigations of magnetic systems with structure on the nanometer scale. The article concludes with a brief discussion of some promising experimental techniques in synthesis and measurements.

1,522 citations

Journal ArticleDOI
TL;DR: This review critically identifies the shortcomings in current research on LDHs, such as the common weaknesses in the adopted methodology, discrepancies among reported results and ambiguous conclusions.

1,445 citations