scispace - formally typeset
Search or ask a question
Author

Francisco Javier Gálvez

Bio: Francisco Javier Gálvez is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Solanum & Genetically modified tomato. The author has an hindex of 7, co-authored 9 publications receiving 576 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants, and it is becoming increasingly clear that this gene and other members of the family play crucial roles in pH regulation and K+ homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.
Abstract: Although physiological and biochemical data since long suggested that Na+/H+ and K+/H+ antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative Cation/Proton antiporters, the function of which is only beginning to be studied. The intracellular NHX transporters constitute the first Cation/Proton exchanger family studied in plants. The founding member, AtNHX1, was identified as an important salt tolerance determinant and suggested to catalyze Na+ accumulation in vacuoles. It is, however, becoming increasingly clear, that this gene and other members of the family also play crucial roles in pH regulation and K+ homeostasis, regulating processes from vesicle trafficking and cell expansion to plant development.

219 citations

Journal ArticleDOI
TL;DR: The data indicate that regulation of K+ homeostasis by LeNHX2 is essential for normal plant growth and development, and plays an important role in the response to salt stress by improving K+ accumulation.
Abstract: Here, the function of the tomato (Solanum lycopersicon) K+/H+ antiporter LeNHX2 was studied using 35S-driven gene overexpression of a histagged LeNHX2 protein in Arabidopsis thaliana and LeNHX2 gene silencing in tomato. Transgenic A. thaliana plants expressed the histagged LeNHX2 both in shoots and in roots, as assayed by western blotting. Transitory expression of a green fluorescent protein (GFP) tagged protein showed that the antiporter is present in small vesicles. Internal membrane vesicles from transgenic plants displayed enhanced K+/H+ exchange activity, confirming the K+/H+ antiporter function of this enzyme. Transgenic A. thaliana plants overexpressing the histagged tomato antiporter LeNHX2 exhibited inhibited growth in the absence of K+ in the growth medium, but were more tolerant to high concentrations of Na+ than untransformed controls. When grown in the presence of NaCl, transgenic plants contained lower concentrations of intracellular Na+, but more K+, as compared with untransformed controls. Silencing of LeNHX2 in S. lycopersicon plants produced significant inhibition of plant growth and fruit and seed production as well as increased sensitivity to NaCl. The data indicate that regulation of K+ homeostasis by LeNHX2 is essential for normal plant growth and development, and plays an important role in the response to salt stress by improving K+ accumulation.

160 citations

Journal ArticleDOI
TL;DR: A role of NHX genes as determinants of salt tolerance in tomato, inducing enhanced Na(+) accumulation observed in the wild species when grown in the presence of NaCl is supported.

103 citations

Journal ArticleDOI
TL;DR: It can be concluded that SlSOS2 is the functional tomato homolog of Arabidopsis AtSos2 and that SlsOS2 operates in a tomato SOS signal transduction pathway.
Abstract: The Ca(2+)-dependent SOS pathway has emerged as a key mechanism in the homeostasis of Na(+) and K(+) under saline conditions. We have identified and functionally characterized the gene encoding the calcineurin-interacting protein kinase of the SOS pathway in tomato, SlSOS2. On the basis of protein sequence similarity and complementation studies in yeast and Arabidopsis, it can be concluded that SlSOS2 is the functional tomato homolog of Arabidopsis AtSOS2 and that SlSOS2 operates in a tomato SOS signal transduction pathway. The biotechnological potential of SlSOS2 to provide salt tolerance was evaluated by gene overexpression in tomato (Solanum lycopersicum L. cv. MicroTom). The better salt tolerance of transgenic plants relative to non-transformed tomato was shown by their faster relative growth rate, earlier flowering and higher fruit production when grown with NaCl. The increased salinity tolerance of SlSOS2-overexpressing plants was associated with higher sodium content in stems and leaves and with the induction and up-regulation of the plasma membrane Na(+)/H(+) (SlSOS1) and endosomal-vacuolar K(+), Na(+)/H(+) (LeNHX2 and LeNHX4) antiporters, responsible for Na(+) extrusion out of the root, active loading of Na(+) into the xylem, and Na(+) and K(+) compartmentalization.

98 citations

Journal ArticleDOI
TL;DR: Results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.
Abstract: Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor-mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin-derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin-derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.
Abstract: Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.

1,455 citations

Journal ArticleDOI
TL;DR: The roles of a range of genes involved in salt tolerance traits are reviewed, including ion exclusion, osmotic tolerance and tissue tolerance, which are a major constraint to agriculture.

850 citations

Journal ArticleDOI
TL;DR: In this article, a major breakthrough in crop breeding for salinity tolerance was proposed, where stress tolerance genes and mechanisms were identified in extremophiles and then introduced into traditional crops, given the limited range of genetic diversity in this trait within traditional crops.

575 citations

Journal ArticleDOI
TL;DR: It is argued that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase.
Abstract: Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.

501 citations

Journal ArticleDOI
TL;DR: Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions.
Abstract: Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt affected fields.

499 citations