scispace - formally typeset
Search or ask a question
Author

Francisco Martín

Bio: Francisco Martín is an academic researcher from University of Málaga. The author has contributed to research in topics: Thin film & X-ray photoelectron spectroscopy. The author has an hindex of 33, co-authored 158 publications receiving 3453 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a spray pyrolysis of aqueous copper acetate solutions at temperatures over 200-300 8C range was performed to determine textural and structural properties of the films.

225 citations

Journal ArticleDOI
TL;DR: In this paper, structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis fromzinc acetate (Zn(CH 3COO)2 2H2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature.

194 citations

Journal ArticleDOI
TL;DR: In this paper, the textural and structural properties of nanostructured CuO thin films were characterized by scanning electron microscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS).

193 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the presence of titanium dioxide increases the reversibility of the redox reactions undergone by the electrolyte during discharge/charge processes in Li-ion batteries.
Abstract: Nanometric mixed iron-titanium oxides were prepared by mechanical milling with a view to determining their ability to act as anodic materials in lithium cells. At a TiO2/Fe2O3 mole ratio of 0.4, a solid-state reaction occurs that leads to the formation of Fe5TiO8, which possesses a spinel-like structure; at lower ratios, however, the structure retains the hematite framework. Li/g-Fe2O3 cells exhibit poor electrochemical reversibility; by contrast, Ti-containing electrodes possess improved cycling properties. Changes in the electrodes upon cycling were examined by X-ray photoelectron spectroscopy (XPS). XPS data confirm the participation of electrolyte in the electrochemical reaction and the different type of electrochemical reversibility exhibited by samples. Both processes were influenced by the presence of titanium. Titanium dioxide, in the presence of iron oxides, seems to be inactive to the electrochemical process. Based on the step potential electrochemical spectroscopy (SPES) curves and photoelectron spectra obtained, the presence of Ti increases the reversibility of the redox reactions undergone by the electrolyte during discharge/charge processes. The increased active-material/electrolyte/inactive-material interaction which is reported here offers new perspectives for the use of well-known transition oxides as anode materials in Li-ion batteries.

158 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of Zn acetate or/and Zn chloride as ZnO precursors have been studied on the c-preferred orientations of pure ZnOs and ZnsO films doped with aluminium obtained by spray pyrolysis.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

Journal ArticleDOI
TL;DR: This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li-ion batteries.
Abstract: Despite the imminent commercial introduction of Li-ion batteries in electric drive vehicles and their proposed use as enablers of smart grids based on renewable energy technologies, an intensive quest for new electrode materials that bring about improvements in energy density, cycle life, cost, and safety is still underway. This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li-ion batteries. By moving beyond classical intercalation reactions, a variety of low cost compounds with gravimetric specific capacities that are two-to-five times larger than those attained with currently used materials, such as graphite and LiCoO(2), can be achieved. Nonetheless, several factors currently handicap the applicability of electrode materials entailing conversion reactions. These factors, together with the scientific breakthroughs that are necessary to fully assess the practicality of this concept, are reviewed in this report.

2,108 citations

Journal ArticleDOI
TL;DR: Nanostructured materials such as nano-carbons, alloys, metal oxides, and metal sulfides/nitrides have been used as anodes for rechargeable lithium-ion batteries.
Abstract: In this paper, the use of nanostructured anode materials for rechargeable lithium-ion batteries (LIBs) is reviewed. Nanostructured materials such as nano-carbons, alloys, metal oxides, and metal sulfides/nitrides have been used as anodes for next-generation LIBs with high reversible capacity, fast power capability, good safety, and long cycle life. This is due to their relatively short mass and charge pathways, high transport rates of both lithium ions and electrons, and other extremely charming surface activities. In this review paper, the effect of the nanostructure on the electrochemical performance of these anodes is presented. Their synthesis processes, electrochemical properties, and electrode reaction mechanisms are also discussed. The major goals of this review are to give a broad overview of recent scientific researches and developments of anode materials using novel nanoscience and nanotechnology and to highlight new progresses in using these nanostructured materials to develop high-performance LIBs. Suggestions and outlooks on future research directions in this field are also given.

2,042 citations