scispace - formally typeset
Search or ask a question
Author

Francisco Meseguer

Bio: Francisco Meseguer is an academic researcher from Polytechnic University of Valencia. The author has contributed to research in topics: Silicon & Photonic crystal. The author has an hindex of 41, co-authored 126 publications receiving 8022 citations. Previous affiliations of Francisco Meseguer include Polytechnic University of Puerto Rico & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
25 May 2000-Nature
TL;DR: Single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm are described, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small ‘necks’ formed during sintering, followed by removal of the silica template.
Abstract: Photonic technology, using light instead of electrons as the information carrier, is increasingly replacing electronics in communication and information management systems. Microscopic light manipulation, for this purpose, is achievable through photonic bandgap materials1,2, a special class of photonic crystals in which three-dimensional, periodic dielectric constant variations controllably prohibit electromagnetic propagation throughout a specified frequency band. This can result in the localization of photons3,4,5,6, thus providing a mechanism for controlling and inhibiting spontaneous light emission that can be exploited for photonic device fabrication. In fact, carefully engineered line defects could act as waveguides connecting photonic devices in all-optical microchips7, and infiltration of the photonic material with suitable liquid crystals might produce photonic bandgap structures (and hence light-flow patterns) fully tunable by an externally applied voltage8,9,10. However, the realization of this technology requires a strategy for the efficient synthesis of high-quality, large-scale photonic crystals with photonic bandgaps at micrometre and sub-micrometre wavelengths, and with rationally designed line and point defects for optical circuitry. Here we describe single crystals of silicon inverse opal with a complete three-dimensional photonic bandgap centred on 1.46 µm, produced by growing silicon inside the voids of an opal template of close-packed silica spheres that are connected by small ‘necks’ formed during sintering, followed by removal of the silica template. The synthesis method is simple and inexpensive, yielding photonic crystals of pure silicon that are easily integrated with existing silicon-based microelectronics.

1,520 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an experimental analysis of the acoustic transmission of a two-dimensional periodic array of rigid cylinders in air with two different geometrical configurations: square and triangular.
Abstract: In this Letter we present an experimental analysis of the acoustic transmission of a two-dimensional periodic array of rigid cylinders in air with two different geometrical configurations: square and triangular. In both configurations, and above a certain filling fraction, we observe an overlap, in the range of the audible frequencies, between the attenuation peaks measured along the two high-symmetry directions of the Brillouin zone. This effect is considered as the fingerprint of the existence of a full acoustic gap. Nevertheless, the comparison with our calculation of band structures shows that the triangular lattice has band states in that frequency range. We call them deaf bands. This contradictory result is explained by looking at the symmetry of the deaf bands; they cannot be excited by experiments of sound transmission. [S0031-9007(98)06295-4]

452 citations

Journal ArticleDOI
TL;DR: In this paper, the optical properties of packed monodisperse silica submicron spheres were investigated by means of optical transmission measurements and the results were compatible with a three dimensional face centered cubic order in these solid structures.
Abstract: In this letter, we investigate the optical properties of packed monodisperse silica submicron spheres by means of optical transmission measurements. The results are compatible with a three dimensional face centered cubic order in these solid structures. The lattice parameter of these structures, and therefore their optical properties, can be easily tuned through the sphere size (between 200 and 700 nm) thus covering the whole visible and near infrared spectrum.

319 citations


Cited by
More filters
Journal ArticleDOI
08 Sep 2000-Science
TL;DR: In this article, a 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.
Abstract: We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.

3,758 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
18 Nov 2016-Science
TL;DR: How high-index dielectric nanoparticles can offer a substitute for plasmonic nanoparticle structures, providing a highly flexible and low-loss route to the manipulation of light at the nanoscale is reviewed.
Abstract: The resonant modes of plasmonic nanoparticle structures made of gold or silver endow them with an ability to manipulate light at the nanoscale. However, owing to the high light losses caused by metals at optical wavelengths, only a small fraction of plasmonics applications have been realized. Kuznetsov et al. review how high-index dielectric nanoparticles can offer a substitute for these metals, providing a highly flexible and low-loss route to the manipulation of light at the nanoscale. Science , this issue p. [10.1126/science.aag2472][1] [1]: /lookup/doi/10.1126/science.aag2472

2,161 citations

Journal ArticleDOI
TL;DR: Digital metamaterials consisting of two kinds of unit cells whose different phase responses allow them to act as ‘0’ and ‘1’ bits are developed to enable controlled manipulation of electromagnetic waves.
Abstract: Smart materials offering great freedom in manipulating electromagnetic radiation have been developed. This exciting new concept was realized by Tie Jun Cui and co-workers at the Southeast University, China, who developed digital metamaterials consisting of two kinds of unit cells whose different phase responses allow them to act as ‘0’ and ‘1’ bits. These cells can be judiciously arranged in sequences to enable controlled manipulation of electromagnetic waves. This is one-bit coding; higher-bit coding is possible by employing more kinds of unit cells. The researchers developed a metamaterial cell whose binary response can be controlled by a biased diode. By using a field-programmable gate array, they demonstrated that this digital metamaterial can be programmed. Such metamaterials are attractive for controlling radiation beams in antennas and for realizing other ‘smart’ metamaterials.

1,767 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: By assembling a thin layer of colloidal spheres on a silicon substrate, this work can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives.
Abstract: Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges1,2,3. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals4,5,6,7,8,9. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres10,11,12,13,14,15. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap16,17. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.

1,649 citations