scispace - formally typeset
Search or ask a question
Author

Francisco Ramos

Bio: Francisco Ramos is an academic researcher from James I University. The author has contributed to research in topics: Polygon mesh & Rendering (computer graphics). The author has an hindex of 8, co-authored 35 publications receiving 208 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities using the most popular databases and executing the corresponding filtration.
Abstract: The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features.

68 citations

Journal ArticleDOI
TL;DR: A multiplatform mobile app featuring Augmented Reality capabilities connected to GIS services are developed to evaluate different features such as performance, usability, effectiveness and satisfaction of theAugmented Reality technology in the context of a Smart Campus.
Abstract: The idea of virtuality is not new, as research on visualization and simulation dates back to the early use of ink and paper sketches for alternative design comparisons. As technology has advanced so the way of visualizing simulations as well, but the progress is slow due to difficulties in creating workable simulations models and effectively providing them to the users. Augmented Reality and Virtual Reality, the evolving technologies that have been haunting the tech industry, receiving excessive attention from the media and colossal growing are redefining the way we interact, communicate and work together. From consumer application to manufacturers these technologies are used in different sectors providing huge benefits through several applications. In this work, we demonstrate the potentials of Augmented Reality techniques in a Smart City (Smart Campus) context. A multiplatform mobile app featuring Augmented Reality capabilities connected to GIS services are developed to evaluate different features such as performance, usability, effectiveness and satisfaction of the Augmented Reality technology in the context of a Smart Campus.

62 citations

Journal ArticleDOI
01 Aug 2018-Sensors
TL;DR: A technology-agnostic methodology is presented, which allows for creating pollution-free routes across cities depending on the level of pollution in each zone, and proposes and carries forward to deployment of the defined methodology in a big city, such as Madrid (Spain).
Abstract: Nowadays, citizens have a huge concern about the quality of life in their cities, especially regarding the level of pollution. Air quality level is of great importance, not only to plan our activities but also to take precautionary measures for our health. All levels of governments are concerned about it and have built their indexes to measure the air quality level in their countries, regions or cities. Taking into account the existing sensor infrastructure within smart cities, it makes possible to evaluate these indices and to know anywhere the level of pollution in real-time. In this scenario, the main objective of the current work is to foster citizens' awareness about pollution by offering pollution-free routes. To achieve this goal, a technology-agnostic methodology is presented, which allows for creating pollution-free routes across cities depending on the level of pollution in each zone. The current work includes an extensive study of existing air quality indices, and proposes and carries forward to deployment of the defined methodology in a big city, such as Madrid (Spain).

30 citations

Journal ArticleDOI
TL;DR: The presented algorithm introduces a new adaptive tessellation scheme for managing the level of detail of the terrain mesh, avoiding the appearance of t-vertices that can produce visually disturbing artifacts.

27 citations

Journal ArticleDOI
TL;DR: A user-assisted mesh simplification method applied to CAD models converted to triangle meshes that offers the possibility of simplifying each subobject independently and at different levels of detail.
Abstract: This paper proposes a user-assisted mesh simplification method applied to CAD models converted to triangle meshes. This work offers the possibility of simplifying each subobject independently and at different levels of detail. This way, the user can simplify the whole model and then modify some parts, by simplifying more or by refining the desired subobjects. This can be performed while the total number of triangles in the simplified model is maintained. In this method any error metric based on an edge collapse operation can be used. Boundaries between subobjects are preserved and important attributes in the final aspect of simplified models, like normals and texture coordinates, are also considered.

18 citations


Cited by
More filters
01 Jan 2016
TL;DR: Dillman and Smyth as mentioned in this paper described the Tailored design method as a "tailored design methodology" and used it in their book "The Tailored Design Method: A Manual for Personalization".
Abstract: Resena de la obra de Don A. Dillman, Jolene D. Smyth y Leah Melani Christian: Internet, Phone, Mail and Mixed-Mode Surveys. The Tailored Design Method. New Jersey: John Wiley and Sons

1,467 citations

Journal ArticleDOI
TL;DR: The landscape of MAR through the past and its future prospects with respect to the 5G systems and complementary technology MEC are discussed and an informative analysis of the network formation of current and future MAR systems in terms of cloud, edge, localized, and hybrid architectural options is provided.
Abstract: The Augmented Reality (AR) technology enhances the human perception of the world by combining the real environment with the virtual space. With the explosive growth of powerful, less expensive mobile devices, and the emergence of sophisticated communication infrastructure, Mobile Augmented Reality (MAR) applications are gaining increased popularity. MAR allows users to run AR applications on mobile devices with greater mobility and at a lower cost. The emerging 5G communication technologies act as critical enablers for future MAR applications to achieve ultra-low latency and extremely high data rates while Multi-access Edge Computing (MEC) brings enhanced computational power closer to the users to complement MAR. This paper extensively discusses the landscape of MAR through the past and its future prospects with respect to the 5G systems and complementary technology MEC. The paper especially provides an informative analysis of the network formation of current and future MAR systems in terms of cloud, edge, localized, and hybrid architectural options. The paper discusses key application areas for MAR and their future with the advent of 5G technologies. The paper also discusses the requirements and limitations of MAR technical aspects such as communication, mobility management, energy management, service offloading and migration, security, and privacy and analyzes the role of 5G technologies.

259 citations

Journal IssueDOI
TL;DR: A robust, automated system for large-scale three-dimensional reconstruction and visualization that takes stereo imagery from an autonomous underwater vehicle (AUV) and SLAM-based vehicle poses to deliver detailed 3D models of the seafloor in the form of textured polygonal meshes is presented.
Abstract: Robust, scalable simultaneous localization and mapping (SLAM) algorithms support the successful deployment of robots in real-world applications. In many cases these platforms deliver vast amounts of sensor data from large-scale, unstructured environments. These data may be difficult to interpret by end users without further processing and suitable visualization tools. We present a robust, automated system for large-scale three-dimensional (3D) reconstruction and visualization that takes stereo imagery from an autonomous underwater vehicle (AUV) and SLAM-based vehicle poses to deliver detailed 3D models of the seafloor in the form of textured polygonal meshes. Our system must cope with thousands of images, lighting conditions that create visual seams when texturing, and possible inconsistencies between stereo meshes arising from errors in calibration, triangulation, and navigation. Our approach breaks down the problem into manageable stages by first estimating local structure and then combining these estimates to recover a composite georeferenced structure using SLAM-based vehicle pose estimates. A texture-mapped surface at multiple scales is then generated that is interactively presented to the user through a visualization engine. We adapt established solutions when possible, with an emphasis on quickly delivering approximate yet visually consistent reconstructions on standard computing hardware. This allows scientists on a research cruise to use our system to design follow-up deployments of the AUV and complementary instruments. To date, this system has been tested on several research cruises in Australian waters and has been used to reliably generate and visualize reconstructions for more than 60 dives covering diverse habitats and representing hundreds of linear kilometers of survey. © 2009 Wiley Periodicals, Inc.

227 citations

DOI
01 Jan 1998
TL;DR: An all-in-one visualization system which integrates adaptive triangulation, dynamic scene management and spatial data handling and new algorithms of restricted quadtree triangulated surfaces are described.
Abstract: Real-time rendering of triangulated surfaces has attracted growing interest in the last few years. However, interactive visualization of very large scale grid digital elevation models is still difficult. The graphics load must be controlled by adaptive surface triangulation and by taking advantage of different levels of detail. Furthermore, management of the visible scene requires efficient access to the terrain database. We describe an all-in-one visualization system which integrates adaptive triangulation, dynamic scene management and spatial data handling. The triangulation model is based on the restricted quadtree triangulation. Furthermore, we present new algorithms of restricted quadtree triangulation. These include among others exact error approximation, progressive meshing, performance enhancements and spatial access.

136 citations

Journal ArticleDOI
TL;DR: A comprehensive overview about the state-of-the-art architecture and technologies, and the most recent developments in the Geoprocessing Web is provided.

100 citations