scispace - formally typeset
Search or ask a question
Author

Francisco Saura

Bio: Francisco Saura is an academic researcher from University of Cartagena. The author has contributed to research in topics: Freundlich equation & Adsorption. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the removal of cephalosporin C (CPC) from aqueous solutions by adsorption onto activated olive stones (AOS) in a stirred tank.
Abstract: In this paper, we describe the removal of cephalosporin C (CPC) from aqueous solutions by adsorption onto activated olive stones (AOS) in a stirred tank. For comparative purposes, several experiments of adsorption onto commercial granular activated carbon were carried out. A quantum study of the different species of cephalosporin C that, depending on the pH, exist in aqueous solution pointed to a favorable mass transfer process during adsorption. Activated olive stones were characterized by SEM, EDX and IR techniques and their pHzc was determined. A 10-3 M HCl cephalosporin C solution has been selected for the adsorption experiments because at the pH of that solution both electrostatic and hydrogen bond interactions are expected to be established between the adsorbate and the adsorbent. The adsorption process is best described by the Freundlich isotherm model and the pseudo-second-order kinetic model, while the adsorption mechanism is mainly controlled by film diffusion. Under the conditions studied, the adsorption process is of a physical nature, endothermic and spontaneous. Comparison of the adsorption results obtained in this paper with those of other authors shows that the efficiency of AOS is 20% of that of activated carbon but 65% higher than that of the XAD-2 adsorbent. Considering its low price, abundance, easy accessibility and eco-compatibility, the use of activated olive stones as adsorbents for the removal of emerging pollutants from aqueous solutions represents an interesting possibility from both the economic and the environmental points of view.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a super-adsorbent hydrogel based on sodium styrenesulfonate (NaSS) monomer was designed for removal of dyes like methylene blue (MB).
Abstract: Removal of dyes through adsorption from wastewater has gained substantial interest in recent years, especially in development of hydrogel based adsorbents, owing to their easy use and economical nature. The aim of the present study was to design a super-adsorbent hydrogel based on sodium styrenesulfonate (NaSS) monomer for removal of dyes like methylene blue (MB). NaSS displays both an aromatic ring and strongly ionic group in its monomer structure that can enhance adsorption capacity. Poly(sodium styrenesulfonate-co-dimethylacrylamide) hydrogels were prepared by solution free radical polymerization using gelatin methacryloyl (GelMA) as crosslinker, creating a highly porous, three-dimensionally crosslinked polymer network contributing to higher swelling ratios of up to 27,500%. These super-adsorbent hydrogels exhibited high adsorption capacity of 1270 mg/g for MB adsorption with above 98% removal efficiency. This is the first report for such a high adsorption capacity for dye absorbance for NaSS-based hydrogels. Additionally, the adsorption kinetics using a pseudo-first-order and the Freundlich adsorption isotherm models for multilayer, heterogeneous adsorption processes has been reported. The adsorbents’ reusability was confirmed through 4 repeated cycles of desorption-adsorption. The results discussed herein illustrate that NaSS based chemistries can be used as an efficient option for removal of organic dyes from contaminated wastewater.

9 citations