scispace - formally typeset
Search or ask a question
Author

Franck Amyot

Bio: Franck Amyot is an academic researcher from Uniformed Services University of the Health Sciences. The author has contributed to research in topics: Traumatic brain injury & Cerebral blood flow. The author has an hindex of 12, co-authored 39 publications receiving 740 citations. Previous affiliations of Franck Amyot include Walter Reed National Military Medical Center & National Institutes of Health.

Papers
More filters
Journal ArticleDOI
TL;DR: Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI.

209 citations

Journal ArticleDOI
TL;DR: Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI; all imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care.
Abstract: The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimag...

152 citations

Journal ArticleDOI
TL;DR: Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.
Abstract: This research describes a noninvasive, noncontact method used to quantitatively analyze the functional characteristics of tissue. Multispectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multispectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

109 citations

Journal ArticleDOI
TL;DR: In this paper, a curvature correction method was proposed to remove the artifacts due to the object's shape, leading to curvature biased intensity distributions without the need of measuring the shape of the object.
Abstract: Noncontact optical imaging of curved objects can result in strong artifacts due to the object's shape, leading to curvature biased intensity distributions. This artifact can mask variations due to the object's optical properties, and makes reconstruction of optical/physiological properties difficult. In this work we demonstrate a curvature correction method that removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. This method is applicable to many optical imaging modalities that suffer from shape-based intensity biases. By separating the spatially varying data (e.g., physiological changes) from the background signal (dc component), we show that the curvature can be extracted by either averaging or fitting the rows and columns of the images. Numerical simulations show that our method is equivalent to directly removing the curvature, when the object's shape is known, and accurately recovers the underlying data. Experiments on phantoms validate the numerical results and show that for a given image with 16.5% error due to curvature, the method reduces that error to 1.2%. Finally, diffuse multispectral images are acquired on forearms in vivo. We demonstrate the enhancement in image quality on intensity images, and consequently on reconstruction results of blood volume and oxygenation distributions.

45 citations

03 Jun 2010
TL;DR: This work demonstrates a curvature correction method that removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape, and is applicable to many optical imaging modalities that suffer from shape-based intensity biases.

39 citations


Cited by
More filters
Journal ArticleDOI
Andrew I R Maas1, David K. Menon2, P. David Adelson3, Nada Andelic4  +339 moreInstitutions (110)
TL;DR: The InTBIR Participants and Investigators have provided informed consent for the study to take place in Poland.
Abstract: Additional co-authors: Endre Czeiter, Marek Czosnyka, Ramon Diaz-Arrastia, Jens P Dreier, Ann-Christine Duhaime, Ari Ercole, Thomas A van Essen, Valery L Feigin, Guoyi Gao, Joseph Giacino, Laura E Gonzalez-Lara, Russell L Gruen, Deepak Gupta, Jed A Hartings, Sean Hill, Ji-yao Jiang, Naomi Ketharanathan, Erwin J O Kompanje, Linda Lanyon, Steven Laureys, Fiona Lecky, Harvey Levin, Hester F Lingsma, Marc Maegele, Marek Majdan, Geoffrey Manley, Jill Marsteller, Luciana Mascia, Charles McFadyen, Stefania Mondello, Virginia Newcombe, Aarno Palotie, Paul M Parizel, Wilco Peul, James Piercy, Suzanne Polinder, Louis Puybasset, Todd E Rasmussen, Rolf Rossaint, Peter Smielewski, Jeannette Soderberg, Simon J Stanworth, Murray B Stein, Nicole von Steinbuchel, William Stewart, Ewout W Steyerberg, Nino Stocchetti, Anneliese Synnot, Braden Te Ao, Olli Tenovuo, Alice Theadom, Dick Tibboel, Walter Videtta, Kevin K W Wang, W Huw Williams, Kristine Yaffe for the InTBIR Participants and Investigators

1,354 citations

Journal Article
TL;DR: In this article, the diffraction tomography theorem is adapted to one-dimensional length measurement and the resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.
Abstract: The diffraction tomography theorem is adapted to one-dimensional length measurement. The resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.

1,237 citations

[...]

15 Jun 2005
TL;DR: Notch3 mutation is the molecular genetics basis of CADASIL and the detection of gene mutation and skin or muscle biopsy are the main tools in the diagnosis.
Abstract: As one of the causes of stroke, dementia and migraine, cerebral autosomal dominant with subcortical infarcts and leukoencephalopathy(CADASIL) has been paid increasing attention. Notch3 mutation is the molecular genetics basis of CADASIL. The detection of gene mutation and skin or muscle biopsy are the main tools in the diagnosis of CADASIL. Key words: CADASIL ; Notch3

415 citations

Journal ArticleDOI
TL;DR: Overall, the application of ML to mental health has demonstrated a range of benefits across the areas of diagnosis, treatment and support, research, and clinical administration, as well as opportunities to improve and advance the field.
Abstract: BackgroundThis paper aims to synthesise the literature on machine learning (ML) and big data applications for mental health, highlighting current research and applications in practice.MethodsWe employed a scoping review methodology to rapidly map the field of ML in mental health. Eight health and information technology research databases were searched for papers covering this domain. Articles were assessed by two reviewers, and data were extracted on the article's mental health application, ML technique, data type, and study results. Articles were then synthesised via narrative review.ResultsThree hundred papers focusing on the application of ML to mental health were identified. Four main application domains emerged in the literature, including: (i) detection and diagnosis; (ii) prognosis, treatment and support; (iii) public health, and; (iv) research and clinical administration. The most common mental health conditions addressed included depression, schizophrenia, and Alzheimer's disease. ML techniques used included support vector machines, decision trees, neural networks, latent Dirichlet allocation, and clustering.ConclusionsOverall, the application of ML to mental health has demonstrated a range of benefits across the areas of diagnosis, treatment and support, research, and clinical administration. With the majority of studies identified focusing on the detection and diagnosis of mental health conditions, it is evident that there is significant room for the application of ML to other areas of psychology and mental health. The challenges of using ML techniques are discussed, as well as opportunities to improve and advance the field.

365 citations

Journal ArticleDOI
01 Feb 2018-Brain
TL;DR: Using neuropathological analyses of brains from teenage athletes, a new mouse model of concussive impact injury, and computational simulations, Tagge and colleagues show that head injuries can induce TBI and early CTE pathologies independent of concussion.
Abstract: The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001.

289 citations