scispace - formally typeset
Search or ask a question
Author

Franck Tancret

Bio: Franck Tancret is an academic researcher from University of Nantes. The author has contributed to research in topics: Microstructure & Porosity. The author has an hindex of 23, co-authored 62 publications receiving 2045 citations. Previous affiliations of Franck Tancret include Centre national de la recherche scientifique & University of Cambridge.
Topics: Microstructure, Porosity, Creep, Superalloy, Alloy


Papers
More filters
Journal ArticleDOI
TL;DR: An overview on the chemistry, kinetics of setting and handling properties (setting time, cohesion and injectability) of CPCs for bone substitution, with a focus on their mechanical properties shows that, although the mechanical strength of CPC's is generally low, it is not a critical issue for their application for bone repair.

528 citations

Journal ArticleDOI
S. Elfordy1, F. Lucas1, Franck Tancret1, Y. Scudeller1, L. Goudet 
TL;DR: In this paper, the authors used X-ray diffraction to determine the lime carbonatation kinetics of bricks made of a mixture of lime and hemp shives and found that both thermal conductivity and mechanical properties increase with the mortar density.

315 citations

Journal ArticleDOI
TL;DR: In this article, an initial capacity of 415 mAh/g has been measured with a stable reversible capacity close to 200 mAh /g on subsequent cycles without the help of binder and/or conductive additives.

104 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemical reactivity of these various powders is discussed through galvanostatic and potentiodynamic measurements, electron microscopy techniques, and X-ray diffraction on powder.

85 citations

Journal ArticleDOI
TL;DR: In this paper, a model is established to describe mechanical properties as a function of the amount and morphology of porosity, assuming a quasi-continuous matrix containing macropores, the matrix being itself microporous and considering that fracture always initiates on a macropore.
Abstract: Macroporous biphasic calcium phosphate bioceramics, for use as bone substitutes, have been fabricated by cold isostatic pressing and conventional sintering, using naphtalen particles as a porogen to produce macropores. The resulting ceramics, composite materials made of hydroxyapatite and β-tricalcium phosphate (TCP) containing ∼45% macropores and with various microporosities, have been submitted to compression and three-point bending tests, toughness tests by single-edge-notched-bending (SENB), and spherical indentation tests. By combining two approaches at two different scales, one for closed porosity and one for open porosity, a model is established to describe mechanical properties as a function of the amount and morphology of porosity. The model assumes a quasi-continuous matrix containing macropores, the matrix being itself microporous, and considers that fracture always initiates on a macropore. The preliminary mechanical tests performed on the sintered ceramics tend to validate the modelling approach.

83 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li-ion batteries.
Abstract: Despite the imminent commercial introduction of Li-ion batteries in electric drive vehicles and their proposed use as enablers of smart grids based on renewable energy technologies, an intensive quest for new electrode materials that bring about improvements in energy density, cycle life, cost, and safety is still underway. This Progress Report highlights the recent developments and the future prospects of the use of phases that react through conversion reactions as both positive and negative electrode materials in Li-ion batteries. By moving beyond classical intercalation reactions, a variety of low cost compounds with gravimetric specific capacities that are two-to-five times larger than those attained with currently used materials, such as graphite and LiCoO(2), can be achieved. Nonetheless, several factors currently handicap the applicability of electrode materials entailing conversion reactions. These factors, together with the scientific breakthroughs that are necessary to fully assess the practicality of this concept, are reviewed in this report.

2,108 citations

Journal ArticleDOI
TL;DR: This Review discusses model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.
Abstract: Alloying has long been used to confer desirable properties to materials. Typically, it involves the addition of relatively small amounts of secondary elements to a primary element. For the past decade and a half, however, a new alloying strategy that involves the combination of multiple principal elements in high concentrations to create new materials called high-entropy alloys has been in vogue. The multi-dimensional compositional space that can be tackled with this approach is practically limitless, and only tiny regions have been investigated so far. Nevertheless, a few high-entropy alloys have already been shown to possess exceptional properties, exceeding those of conventional alloys, and other outstanding high-entropy alloys are likely to be discovered in the future. Here, we review recent progress in understanding the salient features of high-entropy alloys. Model alloys whose behaviour has been carefully investigated are highlighted and their fundamental properties and underlying elementary mechanisms discussed. We also address the vast compositional space that remains to be explored and outline fruitful ways to identify regions within this space where high-entropy alloys with potentially interesting properties may be lurking. High-entropy alloys have greatly expanded the compositional space for alloy design. In this Review, the authors discuss model high-entropy alloys with interesting properties, the physical mechanisms responsible for their behaviour and fruitful ways to probe and discover new materials in the vast compositional space that remains to be explored.

1,798 citations

Journal Article
TL;DR: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation, move it to a nose cone for hair removal using cream and reduce anesthesia to maintain proper heart rate.
Abstract: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation. 2. Once the animal is sedated, move it to a nose cone for hair removal using cream. Only apply cream to the area of the chest that will be utilized for imaging. Once the hair is removed, wipe area with wet gauze to ensure all hair is removed. 3. Move the animal to the imaging platform and tape its paws to the ECG lead plates and insert rectal probe. Body temperature should be maintained at 36-37°C. During imaging, reduce anesthesia to maintain proper heart rate. If the animal shows signs of being awake, use a higher concentration of anesthetic.

1,557 citations

Journal ArticleDOI
TL;DR: This critical review focuses on anode materials composed of Group IV and V elements with their composites including Ag and Mg metals as well as transition metal oxides which have been intensively investigated.
Abstract: Research to develop alternative electrode materials with high energy densities in Li-ion batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. This critical review focuses on anode materials composed of Group IV and V elements with their composites including Ag and Mg metals as well as transition metal oxides which have been intensively investigated. This critical review is devoted mainly to their electrochemical performances and reaction mechanisms (313 references).

1,497 citations