scispace - formally typeset
Search or ask a question
Author

Franco Turini

Bio: Franco Turini is an academic researcher from University of Pisa. The author has contributed to research in topics: Logic programming & Knowledge extraction. The author has an hindex of 27, co-authored 137 publications receiving 5060 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box decision support systems, given a problem definition, a black box type, and a desired explanation, this survey should help the researcher to find the proposals more useful for his own work.
Abstract: In recent years, many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness, sometimes at the cost of sacrificing accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, it explicitly or implicitly delineates its own definition of interpretability and explanation. The aim of this article is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation, this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.

2,805 citations

Proceedings ArticleDOI
24 Aug 2008
TL;DR: This approach leads to a precise formulation of the redlining problem along with a formal result relating discriminatory rules with apparently safe ones by means of background knowledge, and an empirical assessment of the results on the German credit dataset.
Abstract: In the context of civil rights law, discrimination refers to unfair or unequal treatment of people based on membership to a category or a minority, without regard to individual merit. Rules extracted from databases by data mining techniques, such as classification or association rules, when used for decision tasks such as benefit or credit approval, can be discriminatory in the above sense. In this paper, the notion of discriminatory classification rules is introduced and studied. Providing a guarantee of non-discrimination is shown to be a non trivial task. A naive approach, like taking away all discriminatory attributes, is shown to be not enough when other background knowledge is available. Our approach leads to a precise formulation of the redlining problem along with a formal result relating discriminatory rules with apparently safe ones by means of background knowledge. An empirical assessment of the results on the German credit dataset is also provided.

631 citations

Posted Content
TL;DR: This paper proposes LORE, an agnostic method able to provide interpretable and faithful explanations for black box outcome explanation, and shows that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box.
Abstract: The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box.

323 citations

Journal ArticleDOI
TL;DR: A broad multidisciplinary overview of the area of bias in AI systems is provided, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well‐grounded in a legal frame.
Abstract: Artificial Intelligence (AI)‐based systems are widely employed nowadays to make decisions that have far‐reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well‐grounded in a legal frame. In this survey, we focus on data‐driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.

271 citations

Proceedings ArticleDOI
21 Aug 2011
TL;DR: This paper tackles the problems of discrimination discovery and prevention from a dataset of historical decisions by adopting a variant of k-NN classification, which overcomes legal weaknesses and technical limitations of existing proposals.
Abstract: With the support of the legally-grounded methodology of situation testing, we tackle the problems of discrimination discovery and prevention from a dataset of historical decisions by adopting a variant of k-NN classification. A tuple is labeled as discriminated if we can observe a significant difference of treatment among its neighbors belonging to a protected-by-law group and its neighbors not belonging to it. Discrimination discovery boils down to extracting a classification model from the labeled tuples. Discrimination prevention is tackled by changing the decision value for tuples labeled as discriminated before training a classifier. The approach of this paper overcomes legal weaknesses and technical limitations of existing proposals.

271 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI

6,278 citations