scispace - formally typeset
Search or ask a question
Author

François Auger

Bio: François Auger is an academic researcher from University of Nantes. The author has contributed to research in topics: Rotor (electric) & Kalman filter. The author has an hindex of 23, co-authored 89 publications receiving 3241 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The reassignment method, first applied by Kodera, Gendrin, and de Villedary (1976) to the spectrogram, is generalized to any bilinear time-frequency or time-scale distribution.
Abstract: In this paper, the use of the reassignment method, first applied by Kodera, Gendrin, and de Villedary (1976) to the spectrogram, is generalized to any bilinear time-frequency or time-scale distribution. This method creates a modified version of a representation by moving its values away from where they are computed, so as to produce a better localization of the signal components. We first propose a new formulation of this method, followed by a thorough theoretical study of its characteristics. Its practical use for a large variety of known time-frequency and time-scale distributions is then addressed. Finally, some experimental results are reported to demonstrate the performance of this method. >

1,268 citations

Journal ArticleDOI
TL;DR: This article provides a general overview of time-frequency (T-F) reassignment and synchrosqueezing techniques applied to multicomponent signals, covering the theoretical background and applications.
Abstract: This article provides a general overview of time-frequency (T-F) reassignment and synchrosqueezing techniques applied to multicomponent signals, covering the theoretical background and applications. We explain how synchrosqueezing can be viewed as a special case of reassignment enabling mode reconstruction and place emphasis on the interest of using such T-F distributions throughout with illustrative examples.

458 citations

Journal ArticleDOI
TL;DR: The Kalman filter has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 1970s, ranging from trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal processing, and so on.
Abstract: The Kalman filter (KF) has received a huge interest from the industrial electronics community and has played a key role in many engineering fields since the 1970s, ranging, without being exhaustive, trajectory estimation, state and parameter estimation for control or diagnosis, data merging, signal processing, and so on. This paper provides a brief overview of the industrial applications and implementation issues of the KF in six topics of the industrial electronics community, highlighting some relevant reference papers and giving future research trends.

428 citations

01 Jan 1997
TL;DR: In this article, the authors published a paper under the auspices du Centre National de la Recherche Scientifique (CNRS), France and de la Rice University, USA Reference Record created on 2004-09-07, modified on 2016-08-08
Abstract: Note: Publie sous les auspices du Centre National de la Recherche Scientifique (CNRS), France et de la Rice University, USA Reference Record created on 2004-09-07, modified on 2016-08-08

149 citations

Book ChapterDOI
01 Jan 2002
TL;DR: This chapter discusses time–frequency analysis from a second generation perspective, where what is discussed here essentially builds on the methods that have already been extensively studied and used.
Abstract: Time–frequency analysis (TF) is a field that has experienced a number of qualitative and quantitative changes during the last two decades. Whereas most of classical signal processing studies of the 1970s were aimed at stationary signals and processes, many efforts were devoted to less idealized situations during the 1980s, and the idea of TF progressively emerged as a new paradigm for nonstationarity. It is now well recognized that many signal processing problems can be advantageously phrased in a TF language, and the issue may no longer be designing brand new methods from scratch, but instead in adequately using some of the many tools that we have at our disposal, or in improving them for specific tasks. In some sense, the purpose of this chapter has to be understood from this second generation perspective, because what is discussed here essentially builds on the methods that have already been extensively studied and used. New advances nevertheless are to be provided, thanks to fresh interpretations that have been made possible by recent developments in TF analysis.

128 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations

Journal ArticleDOI
TL;DR: This paper introduces a precise mathematical definition for a class of functions that can be viewed as a superposition of a reasonably small number of approximately harmonic components, and proves that the method does indeed succeed in decomposing arbitrary functions in this class.

1,704 citations

Journal ArticleDOI
TL;DR: The application of the wavelet transform for machine fault diagnostics has been developed for last 10 years at a very rapid rate as mentioned in this paper, and a review on all of the literature is certainly not possible.

1,023 citations

01 Jan 2014

872 citations