scispace - formally typeset
Search or ask a question
Author

François Avellan

Bio: François Avellan is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Francis turbine & Turbine. The author has an hindex of 39, co-authored 366 publications receiving 6147 citations. Previous affiliations of François Avellan include École Polytechnique & University of the Mediterranean.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines, based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine.

308 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamics of the rotating vortex taking place in the discharge ring of a Francis turbine for partial flow rate operating conditions and cavitation free conditions are studied by carrying out both experimental flow survey and numerical simulations.
Abstract: The dynamics of the rotating vortex taking place in the discharge ring of a Francis turbine for partial flow rate operating conditions and cavitation free conditions is studied by carrying out both experimental flow survey and numerical simulations. 2D laser Doppler velocimetry, 3D particle image velocimetry, and unsteady wall pressure measurements are performs to investigate thoroughly the velocity and pressure fields in the discharge ring and to give access to the vortex dynamics. Unsteady RANS simulation are performed and compared to the experimental results. The computing flow domain includes the rotating runner and the elbow draft tube. The mesh size of 500,000 nodes for the 17 flow passages of the runner and 420,000 nodes for the draft tube is optimized to achieve reasonable CPU time for a good representation of the studied phenomena. The comparisons between the detailed experimental flow field and the CFD solution yield to a very good validation of the modeling of the draft tube rotating vortex and, then, validate the presented approach for industrial purpose applications.

198 citations

Journal ArticleDOI
TL;DR: In this article, an experimental and theoretical investigation of the flow at the outlet of a Francis turbine runner is carried out in order to elucidate the causes of a sudden drop in the draft tube pressure recovery coefficient at a discharge near the best efficiency operating point.
Abstract: An experimental and theoretical investigation of the flow at the outlet of a Francis turbine runner is carried out in order to elucidate the causes of a sudden drop in the draft tube pressure recovery coefficient at a discharge near the best efficiency operating point. Laser Doppler anemometry velocity measurements were performed for both axial and circumferential velocity components at the runner outlet. A suitable analytical representation of the swirling flow has been developed taking the discharge coefficient as independent variable. It is found that the investigated mean swirling flow can be accurately represented as a superposition of three distinct vortices. An eigenvalue analysis of the linearized equation for steady, axisymmetric, and inviscid swirling flow reveals that the swirl reaches a critical state precisely (within 1.3%) at the discharge where the sudden variation in draft tube pressure recovery is observed. This is very useful for turbine design and optimization, where a suitable runner geometry should avoid such critical swirl configuration within the normal operating range.

188 citations

Journal ArticleDOI
TL;DR: In this article, a review of research and development activities in the field of hydropower technology is presented, covering emerging and advanced technologies to mitigate flow instabilities (active and passive a...
Abstract: The paper reviews recent research and development activities in the field of hydropower technology. It covers emerging and advanced technologies to mitigate flow instabilities (active and passive a ...

163 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental investigation of the rotating stall in reduced scale model of a low specific speed radial pump-turbine at runaway and turbine brake conditions in generating mode is achieved.
Abstract: An experimental investigation of the rotating stall in reduced scale model of a low specific speed radial pump-turbine at runaway and turbine brake conditions in generating mode is achieved. Measurements of wall pressure in the stator are performed along with high-speed flow visualizations in the vaneless gap with the help of air bubbles injection. When starting from the best efficiency point (BEP) and increasing the impeller speed, a significant increase of the pressure fluctuations is observed mainly in the wicket gates channels. The spectral analysis shows a rise of a low frequency component (about 70% of the impeller rotational frequency) at runaway, which further increases as the zero discharge condition is approached. Analysis of the instantaneous pressure peripheral distribution in the vaneless gap reveals one stall cell rotating with the impeller at sub-synchronous speed. High-speed movies reveal a quite uniform flow pattern in the guide vanes channels at the normal operating range, whereas at runaway the flow is highly disturbed by the rotating stall passage. The situation is even more critical at very low positive discharge, where backflow and vortices in the guide vanes channels develop during the stall cell passage. A specific image processing technique is applied to reconstruct the rotating stall evolution in the entire guide vanes circumference for a low positive discharge operating point. The findings of this study suggest that one stall cell rotates with the impeller at sub-synchronous velocity in the vaneless gap between the impeller and the guide vanes. It is the result of rotating flow separations developed in several consecutive impeller channels which lead to their blockage.

150 citations


Cited by
More filters
Journal ArticleDOI
B.B. Bauer1
01 Apr 1963

897 citations

01 Jan 2016
TL;DR: random data analysis and measurement procedures is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: random data analysis and measurement procedures is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the random data analysis and measurement procedures is universally compatible with any devices to read.

592 citations

Journal ArticleDOI
TL;DR: The introduction of statistical methods into the analysis of aeronautical experimental data, whether for quality control in production, for the interpretation of the results of structural and aerodynamic laboratory experiments, or for airline operation, has been brought about only in recent years, it may by now be fair to assert that their advantages are no longer in dispute.
Abstract: WHILE the introduction of statistical methods into the analysis of aeronautical experimental data, whether for quality control in production, for the interpretation of the results of structural and aerodynamic laboratory experiments, or for airline operation, has been brought about only in recent years, it may by now be fair to assert that their advantages and even their indispensability are no longer in dispute. Hitherto, investigations on these lines have usually involved, explicitly or implicitly, only the ‘normal curve of error’ and allied considerations; owing, it may be thought, to the controllability of the various manufacturing or laboratory techniques, but also perhaps to the scarcity of data hitherto available. It may well be, however, that with the accumulation of information arising out of investigations planned with particular reference to the statistical analysis of their results the whole range of the apparatus for statistical analysis, usually confined to such fields as those of biology or economics, will be called into full play.

350 citations

Journal ArticleDOI
TL;DR: In this paper, the cavitating flow around a NACA66 hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics, including the cavity growth, break-off and collapse downstream.

335 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the recent trends in the numerical meshless method smoothed particle hydrodynamics, with particular focus on its potential use in modelling free-surface flows.
Abstract: This paper assesses some recent trends in the novel numerical meshless method smoothed particle hydrodynamics, with particular focus on its potential use in modelling free-surface flows. Due to its Lagrangian nature, smoothed particle hydrodynamics (SPH) appears to be effective in solving diverse fluid-dynamic problems with highly nonlinear deformation such as wave breaking and impact, multi-phase mixing processes, jet impact, sloshing, flooding and tsunami inundation, and fluid–structure interactions. The paper considers the key areas of rapid progress and development, including the numerical formulations, SPH operators, remedies to problems within the classical formulations, novel methodologies to improve the stability and robustness of the method, boundary conditions, multi-fluid approaches, particle adaptivity, and hardware acceleration. The key ongoing challenges in SPH that must be addressed by academic research and industrial users are identified and discussed. Finally, a roadmap is propose...

326 citations