scispace - formally typeset
Search or ask a question
Author

Francois Clemens

Bio: Francois Clemens is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Sanitary sewer & Combined sewer. The author has an hindex of 23, co-authored 170 publications receiving 2032 citations. Previous affiliations of Francois Clemens include Norwegian University of Science and Technology & City University of New York.


Papers
More filters
Journal ArticleDOI
TL;DR: The new guidelines are introduced in The Netherlands by the end of 1995 and will be evaluated in 1998 using the practical experience acquired by municipalities, waterboards and consulting engineers.

11 citations

Journal ArticleDOI
22 Dec 2018-Water
TL;DR: In this paper, the authors proposed a numerical approach for the analysis of concentrated domestic slurry using the Reynolds-Averaged Navier-Stokes (RANS) approach for turbulent flows.
Abstract: This article follows from a previous study by the authors on the computational fluid dynamics-based analysis of Herschel-Bulkley fluids in a pipe-bounded turbulent flow. The study aims to propose a numerical method that could support engineering processes involving the design and implementation of a waste water transport system, for concentrated domestic slurry. Concentrated domestic slurry results from the reduction in the amount of water used in domestic activities (and also the separation of black and grey water). This primarily saves water and also increases the concentration of nutrients and biomass in the slurry, facilitating efficient recovery. Experiments revealed that upon concentration, domestic slurry flows as a non-Newtonian fluid of the Herschel-Bulkley type. An analytical solution for the laminar transport of such a fluid is available in literature. However, a similar solution for the turbulent transport of a Herschel-Bulkley fluid is unavailable, which prompted the development of an appropriate wall function to aid the analysis of such flows. The wall function (called ψ1 hereafter) was developed using Launder and Spalding's standard wall function as a guide and was validated against a range of experimental test-cases, with positive results.ψ1 is assessed for its sensitivity to rheological parameters, namely the yield stress, the fluid consistency index and the behaviour index and their impact on the accuracy with which ψ1 can correctly quantify the pressure loss through a pipe. This is done while simulating the flow of concentrated domestic slurry using the Reynolds-Averaged Navier-Stokes (RANS) approach for turbulent flows. This serves to establish an operational envelope in terms of the rheological parameters and the average flow velocity within which ψ1 is a must for accuracy. One observes that, regardless of the fluid behaviour index, ψ1 is necessary to ensure accuracy with RANS models only in flow regimes where the wall shear stress is comparable to the yield stress within an order of magnitude. This is also the regime within which the concentrated slurry analysed as part of this research flows, making ψ1 a requirement. In addition, when the wall shear stress exceeds the yield stress by more than one order (either due to an inherent lower yield stress or a high flow velocity), the regular Newtonian wall function proposed by Launder and Spalding is sufficient for an accurate estimate of the pressure loss, owing to the relative reduction in non-Newtonian viscosity as compared to the turbulent viscosity.

11 citations

Journal ArticleDOI
TL;DR: It is concluded that the combination of total wastewater system analysis, incorporating the interactions within the wastewater system, with efficient search algorithms is expected to be very valuable in future wastewater system optimisation studies.

10 citations

Journal ArticleDOI
TL;DR: A first trial application of the probabilistic evaluation framework for evaluation of sanitation options in the Nyalenda settlement in Kisumu, Kenya, showed how the range of values that an evaluation parameter may obtain in practice would influence the evaluation outcomes.

10 citations

Journal ArticleDOI
TL;DR: In this study a Graph theory based method is developed and applied for efficiently identifying the most critical elements of a WDN and shows that the structure of the network is more decisive than the hydraulics with respect to the criticality of the system’s performance as a whole.
Abstract: Drinking water distribution networks (WDNs) are a crucial infrastructure for life in cities. Deterioration of this ageing, and partly hidden from view, infrastructure can result in losses due to le...

10 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Book
01 Jun 1976

2,728 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations