scispace - formally typeset
Search or ask a question
Author

Francois Couny

Bio: Francois Couny is an academic researcher from University of Bath. The author has contributed to research in topics: Photonic-crystal fiber & Photonic crystal. The author has an hindex of 30, co-authored 108 publications receiving 4767 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes that the ultimate limit to the attenuation of hollow-core photonic crystal fibres is determined by surface roughness due to frozenin capillary waves, and confirms the wavelength dependence of the minimum loss of fibres drawn to different scales.
Abstract: Hollow-core photonic crystal fibres have excited interest as potential ultra-low loss telecommunications fibres because light propagates mainly in air instead of solid glass. We propose that the ultimate limit to the attenuation of such fibres is determined by surface roughness due to frozenin capillary waves. This is confirmed by measurements of the surface roughness in a HC-PCF, the angular distribution of the power scattered out of the core, and the wavelength dependence of the minimum loss of fibres drawn to different scales.

780 citations

Journal ArticleDOI
16 Nov 2007-Science
TL;DR: Generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber, is demonstrated, opening up a robust and much simplified route to synthesizing attosecond pulses.
Abstract: Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt) infrared laser, producing 12-nanosecond-duration pulses. This represents a reduction by six orders of magnitude in the required laser powers over previous equivalent techniques and opens up a robust and much simplified route to synthesizing attosecond pulses.

505 citations

Journal ArticleDOI
24 Mar 2005-Nature
TL;DR: All-fibre gas cells based on gas-filled hollow-core photonic crystal fibres are reported, which exhibit high performance, excellent long-term pressure stability and ease of use, and could permit gas-phase laser devices incorporated in a ‘credit card’ or even in a laser pointer.
Abstract: Gas-phase materials are used in a variety of laser-based applications--for example, in high-precision frequency measurement, quantum optics and nonlinear optics Their full potential has however not been realized because of the lack of a suitable technology for creating gas cells that can guide light over long lengths in a single transverse mode while still offering a high level of integration in a practical and compact set-up or device As a result, solid-phase materials are still often favoured, even when their performance compares unfavourably with gas-phase systems Here we report the development of all-fibre gas cells that meet these challenges Our structures are based on gas-filled hollow-core photonic crystal fibres, in which we have recently demonstrated substantially enhanced stimulated Raman scattering, and which exhibit high performance, excellent long-term pressure stability and ease of use To illustrate the practical potential of these structures, we report two different devices: a hydrogen-filled cell for efficient generation of rotational Raman scattering using only quasi-continuous-wave laser pulses; and acetylene-filled cells, which we use for absolute frequency-locking of diode lasers with very high signal-to-noise ratios The stable performance of these compact gas-phase devices could permit, for example, gas-phase laser devices incorporated in a 'credit card' or even in a laser pointer

505 citations

Journal ArticleDOI
TL;DR: The fabrication of a seven-cell-core and three-ring-cladding large-pitch Kagome-lattice hollow-core photonic crystal fiber with a hypocycloid-shaped core structure with potential for a number of applications in which the combination of a large optical bandwidth and a low loss is a prerequisite.
Abstract: We report on the fabrication of a seven-cell-core and three-ring-cladding large-pitch Kagome-lattice hollow-core photonic crystal fiber (HC-PCF) with a hypocycloid-shaped core structure. We demonstrate experimentally and theoretically that the design of this core shape enhances the coupling inhibition between the core and cladding modes and offers optical attenuation with a baseline of ∼180 dB/km over a transmission bandwidth larger than 200 THz. This loss figure rivals the state-of-the-art photonic bandgap HC-PCF while offering an approximately three times larger bandwidth and larger mode areas. Also, it beats the conventional circular-core-shaped Kagome HC-PCF in terms of the loss. The development of this novel (to our knowledge) HC-PCF has potential for a number of applications in which the combination of a large optical bandwidth and a low loss is a prerequisite.

390 citations

Journal ArticleDOI
TL;DR: The fabrication and characterization of a new type of hollow-core photonic crystal fiber based on large-pitch kagome lattice lattice cladding is reported, with broad optical transmission bands covering the visible and near-IR parts of the spectrum with relatively low loss and low chromatic dispersion.
Abstract: We report the fabrication and characterization of a new type of hollow-core photonic crystal fiber based on large-pitch (∼12μm) kagome lattice cladding. The optical characteristics of the 19-cell, 7-cell, and single-cell core defect fibers include broad optical transmission bands covering the visible and near-IR parts of the spectrum with relatively low loss and low chromatic dispersion, no detectable surface modes and high confinement of light in the core. Various applications of such a novel fiber are also discussed, including gas sensing, quantum optics, and high harmonic generation.

310 citations


Cited by
More filters
Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid optical waveguide is proposed to confine surface plasmon polaritons over large distances using a dielectric nanowire separated from a metal surface by a nanoscale gap.
Abstract: The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics. Xiang Zhang and colleagues from the University of California, Berkeley, propose a new approach for confining light on scales much smaller than the wavelength of light. Using hybrid waveguides that incorporate dielectric and plasmonic waveguiding techniques, they are able to confine surface plasmon polaritons very strongly over large distances. The advance could lead to truly nanoscale plasmonics and photonics.

1,905 citations

Journal ArticleDOI
TL;DR: This paper reviews the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in Terms of high-power performance.
Abstract: The rise in output power from rare-earth-doped fiber sources over the past decade, via the use of cladding-pumped fiber architectures, has been dramatic, leading to a range of fiber-based devices with outstanding performance in terms of output power, beam quality, overall efficiency, and flexibility with regard to operating wavelength and radiation format. This success in the high-power arena is largely due to the fiber’s geometry, which provides considerable resilience to the effects of heat generation in the core, and facilitates efficient conversion from relatively low-brightness diode pump radiation to high-brightness laser output. In this paper we review the current state of the art in terms of continuous-wave and pulsed performance of ytterbium-doped fiber lasers, the current fiber gain medium of choice, and by far the most developed in terms of high-power performance. We then review the current status and challenges of extending the technology to other rare-earth dopants and associated wavelengths of operation. Throughout we identify the key factors currently limiting fiber laser performance in different operating regimes—in particular thermal management, optical nonlinearity, and damage. Finally, we speculate as to the likely developments in pump laser technology, fiber design and fabrication, architectural approaches, and functionality that lie ahead in the coming decade and the implications they have on fiber laser performance and industrial/scientific adoption.

1,689 citations