scispace - formally typeset
Search or ask a question
Author

François Fouss

Other affiliations: University College London
Bio: François Fouss is an academic researcher from Université catholique de Louvain. The author has contributed to research in topics: Graph (abstract data type) & Shortest path problem. The author has an hindex of 19, co-authored 51 publications receiving 2527 citations. Previous affiliations of François Fouss include University College London.


Papers
More filters
Journal ArticleDOI
TL;DR: The model, which nicely fits into the so-called "statistical relational learning" framework, could also be used to compute document or word similarities, and could be applied to machine-learning and pattern-recognition tasks involving a relational database.
Abstract: This work presents a new perspective on characterizing the similarity between elements of a database or, more generally, nodes of a weighted and undirected graph. It is based on a Markov-chain model of random walk through the database. More precisely, we compute quantities (the average commute time, the pseudoinverse of the Laplacian matrix of the graph, etc.) that provide similarities between any pair of nodes, having the nice property of increasing when the number of paths connecting those elements increases and when the "length" of paths decreases. It turns out that the square root of the average commute time is a Euclidean distance and that the pseudoinverse of the Laplacian matrix is a kernel matrix (its elements are inner products closely related to commute times). A principal component analysis (PCA) of the graph is introduced for computing the subspace projection of the node vectors in a manner that preserves as much variance as possible in terms of the Euclidean commute-time distance. This graph PCA provides a nice interpretation to the "Fiedler vector," widely used for graph partitioning. The model is evaluated on a collaborative-recommendation task where suggestions are made about which movies people should watch based upon what they watched in the past. Experimental results on the MovieLens database show that the Laplacian-based similarities perform well in comparison with other methods. The model, which nicely fits into the so-called "statistical relational learning" framework, could also be used to compute document or word similarities, and, more generally, it could be applied to machine-learning and pattern-recognition tasks involving a relational database

1,276 citations

Book ChapterDOI
20 Sep 2004
TL;DR: The Principal Components Analysis (PCA) of a graph is defined as the subspace projection that preserves as much variance as possible, in terms of the ECTD, a principal components analysis of the graph based on a Markov-chain model of random walk through the graph.
Abstract: This work presents a novel procedure for computing (1) distances between nodes of a weighted, undirected, graph, called the Euclidean Commute Time Distance (ECTD), and (2) a subspace projection of the nodes of the graph that preserves as much variance as possible, in terms of the ECTD – a principal components analysis of the graph. It is based on a Markov-chain model of random walk through the graph. The model assigns transition probabilities to the links between nodes, so that a random walker can jump from node to node. A quantity, called the average commute time, computes the average time taken by a random walker for reaching node j for the first time when starting from node i, and coming back to node i. The square root of this quantity, the ECTD, is a distance measure between any two nodes, and has the nice property of decreasing when the number of paths connecting two nodes increases and when the "length" of any path decreases. The ECTD can be computed from the pseudoinverse of the Laplacian matrix of the graph, which is a kernel. We finally define the Principal Components Analysis (PCA) of a graph as the subspace projection that preserves as much variance as possible, in terms of the ECTD. This graph PCA has some interesting links with spectral graph theory, in particular spectral clustering.

274 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of kernel-on-graphs (kernels on graphs) and two related similarity matrices, which they refer to as kernels on graph.

151 citations

Proceedings ArticleDOI
18 Dec 2006
TL;DR: Results indicate that a simple nearest-neighbours rule based on the similarity measure provided by the regularized Laplacian, the Markov diffusion and the commute time kernels performs best and is recommended for computing similarities between elements of a database.
Abstract: This work presents a systematic comparison between seven kernels (or similarity matrices) on a graph, namely the exponential diffusion kernel, the Laplacian diffusion kernel, the von Neumann kernel, the regularized Laplacian kernel, the commute time kernel, and finally the Markov diffusion kernel and the cross-entropy diffusion matrix - both introduced in this paper - on a collaborative recommendation task involving a database. The database is viewed as a graph where elements are represented as nodes and relations as links between nodes. From this graph, seven kernels are computed, leading to a set of meaningful proximity measures between nodes, allowing to answer questions about the structure of the graph under investigation; in particular, recommend items to users. Cross- validation results indicate that a simple nearest-neighbours rule based on the similarity measure provided by the regularized Laplacian, the Markov diffusion and the commute time kernels performs best. We therefore recommend the use of the commute time kernel for computing similarities between elements of a database, for two reasons: (1) it has a nice appealing interpretation in terms of random walks and (2) no parameter needs to be adjusted.

125 citations

Journal ArticleDOI
TL;DR: This work revisits Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way and shows that the unique optimal policy can be obtained by solving a simple linear system of equations.
Abstract: This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost---nothing particular up to now---you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy---minimizing the expected routing cost---are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model (1996), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches, and discuss the advantages and disadvantages of these algorithms.
Abstract: In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

9,141 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations

Book
01 Jan 2009

8,216 citations