scispace - formally typeset
Search or ask a question
Author

François Hilger

Bio: François Hilger is an academic researcher from Gembloux Agro-Bio Tech. The author has contributed to research in topics: Saccharomyces cerevisiae & Gene. The author has an hindex of 12, co-authored 19 publications receiving 1802 citations.

Papers
More filters
Journal ArticleDOI
Stephen G. Oliver1, Q. J. M. van der Aart2, M. L. Agostoni-Carbone3, Michel Aigle, Lilia Alberghina3, Despina Alexandraki, G. Antoine4, Rashida Anwar1, Juan P. G. Ballesta, Paule Bénit4, Gilbert Berben, Elisabetta Bergantino, N. Biteau, P. A. Bolle, Monique Bolotin-Fukuhara5, Anthony G. A. Brown1, Alistair J. P. Brown6, J. M. Buhler, C. Carcano3, Giovanna Carignani, Håkan Cederberg, R. Chanet4, Roland Contreras, Marc Crouzet, B. Daignan-Fornier5, E. Defoor7, M. Delgado, Jan Demolder, C. Doira5, Evelyne Dubois, Bernard Dujon8, A. Düsterhöft, D. Erdmann, M. Esteban, F. Fabre4, Cécile Fairhead8, Gérard Faye4, Horst Feldmann9, Walter Fiers, M. C. Francingues-Gaillard5, L. Franco, Laura Frontali10, H. Fukuhara4, L. J. Fuller11, P. Galland, Manda E. Gent1, D. Gigot, Véronique Gilliquet, Glansdorff Nn, André Goffeau12, M. Grenson13, P. Grisanti10, Leslie A. Grivell14, M. de Haan14, M. Haasemann, D. Hatat15, Janet Hoenicka, Johannes H. Hegemann, C. J. Herbert16, François Hilger, Stefan Hohmann, Cornelis P. Hollenberg, K. Huse, F. Iborra5, K. J. Indje1, K. Isono17, C. Jacq15, M. Jacquet5, C. M. James1, J. C. Jauniaux13, Y. Jia16, Alberto Jiménez, A. Kelly18, U. Kleinhans, P Kreisl, G. Lanfranchi, C Lewis11, C. G. vanderLinden19, G Lucchini3, K Lutzenkirchen, M.J. Maat14, L. Mallet5, G. Mannhaupet9, Enzo Martegani3, A. Mathieu4, C. T. C. Maurer19, David J. McConnell18, R. A. McKee11, F. Messenguy, Hans-Werner Mewes, Francis Molemans, M. A. Montague18, M. Muzi Falconi3, L. Navas, Carol S. Newlon20, D. Noone18, C. Pallier5, L. Panzeri3, Bruce M. Pearson11, J. Perea15, Peter Philippsen, A. Pierard, Rudi J. Planta19, Paolo Plevani3, B. Poetsch, Fritz M. Pohl21, B. Purnelle12, M. Ramezani Rad, S. W. Rasmussen, A. Raynal5, Miguel Remacha, P. Richterich21, Aki Roberts6, F. Rodriguez3, E. Sanz, I. Schaaff-Gerstenschlager, Bart Scherens, Bertold Schweitzer, Y. Shu15, J. Skala12, Piotr P. Slonimski16, F. Sor4, C. Soustelle5, R. Spiegelberg, Lubomira Stateva1, H. Y. Steensma2, S. Steiner, Agnès Thierry8, George Thireos, Maria Tzermia, L. A. Urrestarazu13, Giorgio Valle, I. Vetter9, J. C. van Vliet-Reedijk19, Marleen Voet7, Guido Volckaert7, P. Vreken19, H. Wang18, John R. Warmington1, D. von Wettstein, Barton Luke Wicksteed6, C. Wilson10, H. Wurst21, G. Xu, A. Yoshikawa17, Friedrich K. Zimmermann, J. G. Sgouros 
07 May 1992-Nature
TL;DR: The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined, which is the first complete sequence analysis of an entire chromosome from any organism.
Abstract: The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.

811 citations

Journal ArticleDOI
Bernard Dujon1, Despina Alexandraki2, Bruno André3, W. Ansorge, Victoriano Baladrón4, Juan P. G. Ballesta5, Andrea Banrevi, P. A. Bolle, Monique Bolotin-Fukuhara6, Peter Bossier7, Germán Bou5, J. Boyer1, M. J. Buitrago4, Geneviève Chéret, Laurence Colleaux1, B. Dalgnan-Fornier6, F. del Rey4, Caroline Dion, H. Domdey, A. Düsterhöft, S. Düsterhus8, K. D. Entian8, Holger Erfle, Pedro F. Esteban4, Heidi Feldmann9, L. Fernandes7, G. M. Fobo, C. Fritz, Hiroshi Fukuhara, C. Gabel, L. Gaillon1, J. M. Carcia-Cantalejo5, José J. García-Ramírez4, Manda E. Gent10, Marjan Ghazvini11, Marjan Ghazvini1, André Goffeau12, A. Gonzaléz4, Dietmar Grothues, Paulo Guerreiro7, Johannes H. Hegemann, N. Hewitt, François Hilger, Cornelis P. Hollenberg, O. Horaitis13, O. Horaitis2, Keith J. Indge10, Alain Jacquier1, C. M. James10, J. C. Jauniaux14, J. C. Jauniaux3, A. Jimenez5, H. Keuchel, L. Kirchrath, K. Kleine, Peter Kötter8, Pierre Legrain1, S. Liebl, Edward J. Louis15, A. Maia e Silva7, Christian Marck, A.-L. Monnier1, D. Mostl, Sylke Müller, B. Obermaier, Stephen G. Oliver10, C. Pallier6, Steve Pascolo11, Steve Pascolo1, Friedhelm Pfeiffer, Peter Philippsen, Rudi J. Planta16, Fritz M. Pohl17, Thomas Pohl, Regina Pohlmann, Daniel Portetelle, Bénédicte Purnelle12, V. Puzos6, M. Ramezani Rad, S. W. Rasmussen18, Miguel Remacha5, José L. Revuelta4, Guy-Franck Richard1, Martin Rieger, Claudina Rodrigues-Pousada7, Matthias Rose8, Thomas Rupp, Maria A. Santos4, Christian Schwager, Christoph Wilhelm Sensen, J. Skala19, J. Skala12, Helena Soares7, Frédéric Sor, J. Stegemann, Hervé Tettelin12, Alain R. Thierry1, M. Tzermia2, L. A. Urrestarazu3, L Van Dyck12, J. C. van Vliet-Reedijk16, Michèle Valens6, M. Vandenbo, C. Vilela7, Stephan Vissers3, D. von Wettstein18, H. Voss, Stefan Wiemann, G. Xu, Jürgen Zimmermann, M. Haasemann6, I. Becker, Hans-Werner Mewes 
02 Jun 1994-Nature
TL;DR: The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined, and the 666,448-base-pair sequence has revealed general chromosome patterns.
Abstract: The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.

383 citations

Journal ArticleDOI
01 Jul 1991-Yeast
TL;DR: The YDp plasmids (Yeast Disruption plasmid) are pUC9 vectors bearing a set of yeast gene disruption cassettes, all uniform in structure and differing only in the selectable marker used (HIS3, LEU2, LYS2, TRP1 or URA3).
Abstract: The YDp plasmids (Yeast Disruption plasmids) are pUC9 vectors bearing a set of yeast gene disruption cassettes, all uniform in structure and differing only in the selectable marker used (HIS3, LEU2, LYS2, TRP1 or URA3). The markers, surrounded by translational termination codons, are embedded in the slightly modified sequence of the pUC9 multiple cloning sites.

351 citations

Journal ArticleDOI
TL;DR: Polyacrylamide gel electrophoresis shows that the synthesis of all species of RNA is thermosensitive, and the existence of three distinct genes, which are each indispensable for the activity of the three RNA polymerases in vivo as well as in vitro, strongly favors the hypothesis of three common subunits in the threeRNAs.
Abstract: Among 150 temperature-sensitive Saccharomyces cerevisiae mutants which we have isolated, 15 are specifically affected in ribonucleic acid (RNA) synthesis. Four of these mutants exhibit particularly drastic changes and were chosen for a more detailed study. In these four mutants, RNA synthesis is immediately blocked after a shift at the nonpermissive temperature (37 C), protein synthesis decays at a rate compatible with messenger RNA half-life, and deoxyribonucleic acid synthesis increases by about 40%. All the mutations display a recessive phenotype. The segregation of the four allelic pairs ts-/ts+ in diploids is mendelian, and the four mutants belong to three complementation groups. The elution patterns (diethylaminoethyl-Sephadex) of the three RNA polymerases of the mutants grown at 37 C for 3.5 h show very low residual activities. The in vitro thermodenaturation confirms the in vivo results; the half-lives of the mutant activities at 45 C are 10 times smaller than those of the wild-type enzymes. Polyacrylamide gel electrophoresis shows that the synthesis of all species of RNA is thermosensitive. The existence of three distinct genes, which are each indispensable for the activity of the three RNA polymerases in vivo as well as in vitro, strongly favors the hypothesis of three common subunits in the three RNA polymerases.

40 citations

Journal ArticleDOI
01 Sep 1990-Yeast
TL;DR: Evidence is presented, based on sequence comparisons and secondary structure prediction, of the presence of a DNA‐binding and dimerization helix‐loop‐helix motif in the yeast transcription activator PHO4.
Abstract: Evidence is presented, based on sequence comparisons and secondary structure prediction, of the presence of a DNA-binding and dimerization helix-loop-helix motif in the yeast transcription activator PHO4. Interest in the existence of this first known motif in yeast is discussed.

37 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
25 Oct 1996-Science
TL;DR: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration and provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history.
Abstract: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.

4,254 citations

Journal ArticleDOI
30 Jan 1998-Yeast
TL;DR: A set of yeast strains based on Saccharomyces cerevisiae S288C in which commonly used selectable marker genes are deleted by design based on the yeast genome sequence has been constructed and analysed and will reduce plasmid integration events which can interfere with a wide variety of molecular genetic applications.
Abstract: A set of yeast strains based on Saccharomyces cerevisiae S288C in which commonly used selectable marker genes are deleted by design based on the yeast genome sequence has been constructed and analysed. These strains minimize or eliminate the homology to the corresponding marker genes in commonly used vectors without significantly affecting adjacent gene expression. Because the homology between commonly used auxotrophic marker gene segments and genomic sequences has been largely or completely abolished, these strains will also reduce plasmid integration events which can interfere with a wide variety of molecular genetic applications. We also report the construction of new members of the pRS400 series of vectors, containing the kanMX, ADE2 and MET15 genes.

3,448 citations

Journal ArticleDOI
01 Dec 1994-Yeast
TL;DR: A dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA is constructed and tested, and some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10–3–10–4.
Abstract: We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.

2,727 citations

Journal ArticleDOI
01 Dec 1996-Genetics
TL;DR: A novel multienzyme approach was used to generate a set of highly representative genomic libraries from S. cerevisiae and a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter.
Abstract: The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections.

2,705 citations