scispace - formally typeset
Search or ask a question
Author

François Letellier

Bio: François Letellier is an academic researcher. The author has contributed to research in topics: Bacteriocin & Leuconostoc mesenteroides. The author has an hindex of 1, co-authored 1 publications receiving 243 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Microsequencing of the pure bacteriocin and of tryptic fragments showed that mesentericin Y105 is a 36 amino acid polypeptide whose primary structure is close to that of leucocin A-UAL 187, which contains an extra residue at the C-terminus and displays only two differences in the overlapping sequence.
Abstract: SUMMARY: A Leuconostoc mesenteroides ssp. mesenteroides was isolated from goat's milk on the basis of its ability to inhibit the growth of Listeria monocytogenes. The antimicrobial effect was due to the presence in the culture medium of a compound, named mesentericin Y105, excreted by the Leuconostoc mesenteroides Y105. The compound displayed known features of bacteriocins from lactic acid bacteria. It appeared as a proteinaceous molecule exhibiting a narrow inhibitory spectrum limited to genus Listeria. The apparent relative molecular mass, as indicated by activity detection after SDS-PAGE, was 2.5–3.0 kDa. The bacteriocin was purified to homogeneity by a simple three-step procedure: a crude supernatant obtained from an early-stationary-phase culture in a defined medium was subjected to affinity chromatography on a blue agarose column, followed by ultrafiltration through a 5 kDa cut-off membrane, and finally by reverse-phase HPLC on a C4 column. Microsequencing of the pure bacteriocin and of tryptic fragments showed that mesentericin Y105 is a 36 amino acid polypeptide whose primary structure is close to that of leucocin A-UAL 187, which contains an extra residue at the C-terminus and displays only two differences in the overlapping sequence. However, unlike leucocin A-UAL 187, mesentericin Y105 displayed a bactericidal mode of action.

246 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A group of antibacterial proteins produced by gram-positive bacteria have attracted great interest in their potential use as food preservatives and as antibacterial agents to combat certain infections due to gram- positive pathogenic bacteria.

2,819 citations

Journal ArticleDOI
TL;DR: Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges that can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
Abstract: Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.

2,051 citations

Journal ArticleDOI
TL;DR: The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.
Abstract: Lactic acid bacteria produce a variety of bacteriocins that have recently come under detailed investigation. The biochemical and genetic characteristics of these antimicrobial proteins are reviewed and common elements are discussed between the different classes of bacteriocins produced by these Gram-positive bacteria.

2,013 citations

Journal ArticleDOI
TL;DR: Toxicity data exist for only a few bacteriocins, but research and their long-time intentional use strongly suggest that bacteriOCins can be safely used.

1,782 citations

18 Nov 2011
TL;DR: This article corrects the article on p. 485 in vol.
Abstract: Listeria monocytogenes is a Gram positive, aerobic, facultative anaerobic and nonacid fast bacterium, which can cause the disease listeriosis in both human and animals. It is widely distributed thoroughout the environment and has been isolated from various plant and animal food products associated with listeriosis outbreaks. Contaminated ready-to-eat food products such as gravad and cold-smoked salmon and rainbow trout have been associated with human listeriosis in Sweden. The aim of this study was to analyse the occurrence and level of L. monocytogenes in gravad and cold-smoked salmon (Salmo salar) products packed under vacuum or modified atmosphere from retail outlets in Sweden. Isolated strains were characterized by serotyping and the diversity of the strains within and between producers were determined with PFGE (Pulsed-field gel electrophoresis). The characterized fish isolates were compared with previously characterized human strains. L. monocytogenes was isolated from 11 (three manufacturers) of 56 products analysed. This included gravad salmon products from three manufacturers and cold-smoked salmon from one manufacturer. The highest level of L. monocytogenes found was 1500 cfu/g from a cold-smoked salmon product but the level was low (<100 cfu/g) in most of the products. Serovar 1/2a was predominant, followed by 4b. Three products of gravad salmon harboured more than one serovar. PFGE typing of the 56 salmon isolates detected five Asc I types: four types were identical to human clinical strains with Asc I and one was identical and one was closely related to human clinical strains with Apa I. Isolation of identical or closely related L. monocytogenes strains from human clinical cases of listeriosis and gravad and cold-smoked salmon suggested that these kinds of products are possible sources of listeriosis in Sweden. Therefore, these products should be considered risk products for human listeriosis.

1,103 citations