scispace - formally typeset
Search or ask a question
Author

François Petitjean

Bio: François Petitjean is an academic researcher from Monash University. The author has contributed to research in topics: Dynamic time warping & Satellite Image Time Series. The author has an hindex of 24, co-authored 96 publications receiving 3001 citations. Previous affiliations of François Petitjean include University of Strasbourg & Monash University, Clayton campus.


Papers
More filters
Journal ArticleDOI
TL;DR: A global technique for averaging a set of sequences is developed, which avoids using iterative pairwise averaging and is thus insensitive to ordering effects, and a new strategy to reduce the length of the resulting average sequence is described.

823 citations

Journal ArticleDOI
TL;DR: An important step towards finding the AlexNet network for TSC is taken by presenting InceptionTime---an ensemble of deep Convolutional Neural Network models, inspired by the Inception-v4 architecture, which outperforms HIVE-COTE's accuracy together with scalability.
Abstract: This paper brings deep learning at the forefront of research into time series classification (TSC). TSC is the area of machine learning tasked with the categorization (or labelling) of time series. The last few decades of work in this area have led to significant progress in the accuracy of classifiers, with the state of the art now represented by the HIVE-COTE algorithm. While extremely accurate, HIVE-COTE cannot be applied to many real-world datasets because of its high training time complexity in $$O(N^2\cdot T^4)$$ for a dataset with N time series of length T. For example, it takes HIVE-COTE more than 8 days to learn from a small dataset with $$N=1500$$ time series of short length $$T=46$$ . Meanwhile deep learning has received enormous attention because of its high accuracy and scalability. Recent approaches to deep learning for TSC have been scalable, but less accurate than HIVE-COTE. We introduce InceptionTime—an ensemble of deep Convolutional Neural Network models, inspired by the Inception-v4 architecture. Our experiments show that InceptionTime is on par with HIVE-COTE in terms of accuracy while being much more scalable: not only can it learn from 1500 time series in one hour but it can also learn from 8M time series in 13 h, a quantity of data that is fully out of reach of HIVE-COTE.

377 citations

Journal ArticleDOI
TL;DR: This work presents the first comprehensive framework for quantitative analysis of drift, giving rise to a new comprehensive taxonomy of concept drift types and a solid foundation for research into mechanisms to detect and address concept drift.
Abstract: Most machine learning models are static, but the world is dynamic, and increasing online deployment of learned models gives increasing urgency to the development of efficient and effective mechanisms to address learning in the context of non-stationary distributions, or as it is commonly called concept drift. However, the key issue of characterizing the different types of drift that can occur has not previously been subjected to rigorous definition and analysis. In particular, while some qualitative drift categorizations have been proposed, few have been formally defined, and the quantitative descriptions required for precise and objective understanding of learner performance have not existed. We present the first comprehensive framework for quantitative analysis of drift. This supports the development of the first comprehensive set of formal definitions of types of concept drift. The formal definitions clarify ambiguities and identify gaps in previous definitions, giving rise to a new comprehensive taxonomy of concept drift types and a solid foundation for research into mechanisms to detect and address concept drift.

356 citations

Journal ArticleDOI
TL;DR: This paper shows that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods for time series classification.
Abstract: Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods. Using this method, it is possible to train and test a classifier on all 85 ‘bake off’ datasets in the UCR archive in $$<\,2\,\hbox {h}$$ , and it is possible to train a classifier on a large dataset of more than one million time series in approximately 1 h.

341 citations

Journal ArticleDOI
TL;DR: The experimental results show that TempCNNs are more accurate than the current state of the art for SITS classification, and some general guidelines on the network architecture, common regularization mechanisms, and hyper-parameter values such as batch size are provided.
Abstract: Latest remote sensing sensors are capable of acquiring high spatial and spectral Satellite Image Time Series (SITS) of the world. These image series are a key component of classification systems that aim at obtaining up-to-date and accurate land cover maps of the Earth’s surfaces. More specifically, current SITS combine high temporal, spectral and spatial resolutions, which makes it possible to closely monitor vegetation dynamics. Although traditional classification algorithms, such as Random Forest (RF), have been successfully applied to create land cover maps from SITS, these algorithms do not make the most of the temporal domain. This paper proposes a comprehensive study of Temporal Convolutional Neural Networks (TempCNNs), a deep learning approach which applies convolutions in the temporal dimension in order to automatically learn temporal (and spectral) features. The goal of this paper is to quantitatively and qualitatively evaluate the contribution of TempCNNs for SITS classification, as compared to RF and Recurrent Neural Networks (RNNs) —a standard deep learning approach that is particularly suited to temporal data. We carry out experiments on Formosat-2 scene with 46 images and one million labelled time series. The experimental results show that TempCNNs are more accurate than the current state of the art for SITS classification. We provide some general guidelines on the network architecture, common regularization mechanisms, and hyper-parameter values such as batch size; we also draw out some differences with standard results in computer vision (e.g., about pooling layers). Finally, we assess the visual quality of the land cover maps produced by TempCNNs.

310 citations


Cited by
More filters
Book ChapterDOI
31 Jan 1963

2,885 citations

Journal ArticleDOI
13 Sep 2017-Nature
TL;DR: The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers.
Abstract: Recent progress implies that a crossover between machine learning and quantum information processing benefits both fields. Traditional machine learning has dramatically improved the benchmarking an ...

2,162 citations

Journal ArticleDOI
TL;DR: This article proposes the most exhaustive study of DNNs for TSC by training 8730 deep learning models on 97 time series datasets and provides an open source deep learning framework to the TSC community.
Abstract: Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

1,833 citations

Journal ArticleDOI
01 Mar 1980-Nature

1,327 citations

Journal ArticleDOI
TL;DR: This review will expose four main components of time-series clustering and is aimed to represent an updated investigation on the trend of improvements in efficiency, quality and complexity of clustering time- series approaches during the last decade and enlighten new paths for future works.

1,235 citations